Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 270(Pt 2): 132252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729503

ABSTRACT

In this study, we developed a novel nanocomposite by synthesizing zinc (ZnNPs), copper (CuNPs), and silver (AgNPs) nanoparticles using olive leaf extract and incorporating them into a chitosan polymer. This approach combines the biocompatibility of chitosan with the antimicrobial and anticancer properties of metal nanoparticles, enhanced by the phytochemical richness of olive leaf extract. The significance of our research lies in its potential to offer a biodegradable and stable alternative to conventional antibiotics and cancer treatments, particularly in combating multidrug-resistant bacteria and various cancer types. Comprehensive characterization through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Transmission Electron Microscopy (TEM) confirmed the successful synthesis of the nanocomposites, with an average size of ~22.6 nm. Phytochemical analysis highlighted the antioxidant-rich composition of both the olive leaf extract and the nanoparticles themselves. Functionally, the synthesized nanoparticles exhibited potent antimicrobial activity against multidrug-resistant bacterial strains, outperforming traditional antibiotics by inhibiting key resistance genes (ermC, tetX3-q, blaZ, and Ery-msrA). In anticancer assessments, the nanoparticles showed selective cytotoxicity towards cancer cells in a concentration-dependent manner, with CuNPs and AgNPs showing particularly strong anticancer effects, while demonstrating minimal toxicity towards normal cells. ZnNPs were noted for their low cytotoxicity, highlighting the safety profile of these nanoparticles. Further, the nanoparticles induced apoptosis in cancer cells, as evidenced by the modulation of oncogenes (P21, P53, and BCL2), suggesting their therapeutic potential. The findings of our study underscore the versatile applications of these biogenic nanoparticles in developing safer and more effective antimicrobial and anticancer therapies.


Subject(s)
Antineoplastic Agents , Chitosan , Green Chemistry Technology , Metal Nanoparticles , Nanocomposites , Olea , Plant Extracts , Plant Leaves , Chitosan/chemistry , Chitosan/pharmacology , Nanocomposites/chemistry , Olea/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Plant Leaves/chemistry , Metal Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , Cell Line, Tumor
2.
Environ Sci Pollut Res Int ; 31(3): 3872-3886, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093080

ABSTRACT

The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium adsorption. Thorium ions were adsorbed from an aqueous solution using the synthesized bio-sorbent (SBL), which was then assessed by X-ray diffraction, BET surface area analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FTIR). Th(IV) sorption properties, including the pH effect, uptake rate, and sorption isotherms across various temperatures were investigated. The maximum sorption capacity of Th(IV) on SBL is 158.88 mg/L at pH value of 4328 K, and 60 min contact time. We demonstrated that the adsorption processes comport well with pseudo-second-order and Langmuir adsorption models considering the kinetics and equilibrium data. According to thermodynamic inspections results, the Th(IV) adsorption process exhibited endothermic and random behavior suggested by positive ΔH° and ΔS° values, while the negative ΔG° values indicated a spontaneous sorption process. The maximum Th(IV) desorption from the loaded SBL (Th/SBL) was carried out at 0.25 M of NaHCO3 and 60 min of contact. Sorption/desorption processes have five successive cycles. Finally, this study suggests that the recycling of BFS and BL can be exploited for the procurement of a promising Th(IV) adsorbents.


Subject(s)
Saccharum , Water Pollutants, Chemical , Cellulose , Thorium/chemistry , Cost-Benefit Analysis , Thermodynamics , Kinetics , Adsorption , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 30(49): 108247-108262, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37747604

ABSTRACT

Water pollution by synthetic anionic dyes is one of the most critical ecological concerns and challenges. Therefore, there is an urgent need to find an efficient adsorbent and photocatalyst for dye removal. In the present study, we aimed to fabricate a hybrid mesoporous composite of spongy sphere-like SnO2 and three-dimensional (3D) cubic-like MgO (SnO2/MgO) as a promising adsorbent/photocatalyst to remove the anionic sunset yellow (SSY) dye from real wastewater at neutral pH conditions. The as-synthesized SnO2 and MgO composite was investigated using XRD, SEM, EDX, TEM, XPS, BET, and zeta potential. The experimental study of the SSY removal using SnO2/MgO composite was performed at different conditions, such as pH, stirring time, dose, and temperature. More than 99% of 10 mg/L SSY was effectively adsorbed from aqueous solution using 40 mg of SnO2/MgO composite at pH 7 and a stirring time of 60 min. The SSY adsorption behavior was well fitted by pseudo-second order and the Langmuir model, indicating that the SSY was chemisorbed to the composite-active sites as a monolayer. On the other hand, photocatalytic degradation process exhibited better results in terms of speed of removal and used quantity of photocatalyst, where 20 mg of SnO2/MgO composite can be used to remove > 99% of SSY dye within 30 min. Mechanism of SSY adsorption and photocatalytic degradation was discussed. In addition, elution experiments demonstrated that the SnO2/MgO composite as an SSY adsorbent could be reused for nine cycles without considerable reduction in the SSY adsorption efficiency. Therefore, this work exhibited that the mesoporous SnO2/MgO composite can be considered an effective adsorbent/photocatalyst to remove SSY dye from real industrial effluent water at neutral pH conditions.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Magnesium Oxide/chemistry , Adsorption , Water , Water Pollutants, Chemical/analysis , Kinetics , Hydrogen-Ion Concentration
4.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145037

ABSTRACT

The efficiency of photovoltaics (PVs) is related to cover material properties and light management in upper layers of the device. This article investigates new polyimide (PI) covers for PVs that enable light trapping through their induced surface texture. The latter is attained via a novel strategy that involves multi-directional rubbing followed by plasma exposure. Atomic force microscopy (AFM) is utilized to clarify the outcome of the proposed light-trapping approach. Since a deep clarification of either random or periodic surface morphology is responsible for the desired light capturing in solar cells, the elaborated texturing procedure generates a balance among both discussed aspects. Multidirectional surface abrasion with sand paper on pre-defined directions of the PI films reveals some relevant modifications regarding both surface morphology and the resulted degree of anisotropy. The illuminance experiments are performed to examine if the created surface texture is suitable for proper light propagation through the studied PI covers. The adhesion among the upper layers of the PV, namely the PI and transparent electrode, is evaluated. The correlation between the results of these analyses helps to identify not only adequate polymer shielding materials, but also to understand the chemical structure response to new design routes for light-trapping, which might significantly contribute to an enhanced conversion efficiency of the PV devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...