Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Article in English | MEDLINE | ID: mdl-32958712

ABSTRACT

Monophosphate prodrug analogs of 2'-deoxy-2'-fluoro-2'-C-methylguanosine have been reported as potent inhibitors of hepatitis C virus (HCV) RNA-dependent RNA polymerase. These prodrugs also display potent anti-dengue virus activities in cellular assays although their prodrug moieties were designed to produce high levels of triphosphate in the liver. Since peripheral blood mononuclear cells (PBMCs) are among the major targets of dengue virus, different prodrug moieties were designed to effectively deliver 2'-deoxy-2'-fluoro-2'-C-methylguanosine monophosphate prodrugs and their corresponding triphosphates into PBMCs after oral administration. We identified a cyclic phosphoramidate, prodrug 17, demonstrating well-balanced anti-dengue virus cellular activity and in vitro stability profiles. We further determined the PBMC concentration of active triphosphate needed to inhibit virus replication by 50% (TP50). Compound 17 was assessed in an AG129 mouse model and demonstrated 1.6- and 2.2-log viremia reductions at 100 and 300 mg/kg twice a day (BID), respectively. At 100 mg/kg BID, the terminal triphosphate concentration in PBMCs exceeded the TP50 value, demonstrating TP50 as the target exposure for efficacy. In dogs, oral administration of compound 17 resulted in high PBMC triphosphate levels, exceeding the TP50 at 10 mg/kg. Unfortunately, 2-week dog toxicity studies at 30, 100, and 300 mg/kg/day showed that "no observed adverse effect level" (NOAEL) could not be achieved due to pulmonary inflammation and hemorrhage. The preclinical safety results suspended further development of compound 17. Nevertheless, present work has proven the concept that an efficacious monophosphate nucleoside prodrug could be developed for the potential treatment of dengue virus infection.


Subject(s)
Dengue , Guanosine/analogs & derivatives , Prodrugs , Amides , Animals , Antiviral Agents/pharmacology , Dengue/drug therapy , Dogs , Female , Hepacivirus , Leukocytes, Mononuclear , Male , Phosphoric Acids , Prodrugs/pharmacology , Prodrugs/therapeutic use
2.
J Med Chem ; 63(2): 621-637, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31910010

ABSTRACT

Dysregulation of translation initiation factor 4E (eIF4E) activity occurs in various cancers. Mitogen-activated protein kinase (MAPK) interacting kinases 1 and 2 (MNK1 and MNK2) play a fundamental role in activation of eIF4E. Structure-activity relationship-driven expansion of a fragment hit led to discovery of dual MNK1 and MNK2 inhibitors based on a novel pyridine-benzamide scaffold. The compounds possess promising in vitro and in vivo pharmacokinetic profiles and show potent on target inhibition of eIF4E phosphorylation in cells.


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Eukaryotic Initiation Factor-4E/antagonists & inhibitors , Humans , Models, Molecular , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship
3.
J Virol ; 89(16): 8233-44, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26018165

ABSTRACT

The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50,>20 M). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial "hit" (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Drug Discovery , Spiro Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Cell Line , Cricetinae , Humans , Spiro Compounds/chemistry
4.
ACS Med Chem Lett ; 6(3): 344-8, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25878766

ABSTRACT

Spiropyrazolopyridone 1 was identified, as a novel dengue virus (DENV) inhibitor, from a DENV serotype 2 (DENV-2) high-throughput phenotypic screen. As a general trend within this chemical class, chiral resolution of the racemate revealed that R enantiomer was significantly more potent than the S. Cell-based lead optimization of the spiropyrazolopyridones focusing on improving the physicochemical properties is described. As a result, an optimal compound 14a, with balanced in vitro potency and pharmacokinetic profile, achieved about 1.9 log viremia reduction at 3 × 50 mg/kg (bid) or 3 × 100 mg/kg (QD) oral doses in the dengue in vivo mouse efficacy model.

5.
Antiviral Res ; 110: 151-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25131378

ABSTRACT

Dengue virus (DENV) infection could lead to dengue fever (DF), dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). The disease outcome is controlled by both viral and host factors. Inflammation mediators from DENV-infected cells could contribute to increased vascular permeability, leading to severe DHF/DSS. Therefore, suppression of inflammation could be a potential therapeutic approach for treatment of dengue patients. In this context, p38 MAPK (mitogen-activated protein kinase) is a key enzyme that modulates the initiation of stress and inflammatory responses. Here we show that SB203580, a p38 MAPK inhibitor, suppressed the over production of DENV-induced pro-inflammatory mediators such as TNF-α, IL-8, and RANTES from human PBMCs, monocytic THP-1, and granulocyte KU812 cell lines. Oral administration of SB203580 in DENV-infected AG129 mice prevented hematocrit rise and lymphopenia, limited the development of inflammation and pathology (including intestine leakage), and significantly improved survival. These results, for the first time, have provided experimental evidence to imply that a short term inhibition of p38 MAPK may be beneficial to reduce disease symptoms in dengue patients.


Subject(s)
Dengue/drug therapy , Enzyme Inhibitors/therapeutic use , Imidazoles/therapeutic use , Inflammation/drug therapy , Pyridines/therapeutic use , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Capillary Permeability/drug effects , Cell Line , Chemokine CCL5/biosynthesis , Cricetinae , Culicidae , Dengue/virology , Dengue Virus/pathogenicity , Enzyme Inhibitors/pharmacology , Hematocrit , Humans , Imidazoles/pharmacology , Interleukin-8/biosynthesis , Lymphopenia/prevention & control , Mice , Pyridines/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis
6.
Tuberculosis (Edinb) ; 91(4): 339-41, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21636324

ABSTRACT

Hypoxia is believed to influence the metabolic state of Mycobacterium tuberculosis and cause phenotypic drug resistance. Using pimonidazole adduct staining, we show that lung lesions of infected rats contain regions of low oxygen tension. Our results support the use of the rat model for evaluating anaerobic drug activity in vivo.


Subject(s)
Granuloma/microbiology , Hypoxia/pathology , Lung/pathology , Mycobacterium tuberculosis/pathogenicity , Nitroimidazoles/pharmacology , Tuberculosis, Pulmonary/pathology , Animals , Disease Models, Animal , Female , Immunohistochemistry , Lung/microbiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...