Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Mar Environ Res ; 188: 105994, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37060725

ABSTRACT

The management of predator-prey conflicts can be a key aspect of species conservation. For management approaches to be effective, a robust understanding of the predator-prey relationship is needed, particularly when both predator and prey are species of conservation concern. On the Isle of May, Firth of Forth, Scotland, numbers of breeding Great Black-backed Gulls Larus marinus, a generalist predator, have been increasing since the 1980s, which has led to increasing numbers of sympatrically breeding Atlantic Puffins Fratercula arctica being predated during the breeding season. This may have consequences for species management on the Isle of May and impact assessments of offshore windfarms in the wider Firth of Forth area. We used population viability analysis to quantify under what predation pressure the Atlantic Puffin population may decline and become locally extinct over a three-generation period. The predation level empirically estimated in 2017 (1120 Puffins per year) was not sufficient to drive a decline in the Puffin population. Rather, an increase to approximately 3000 Puffins per year would be required to cause a population decline, and >4000 to drive the population to quasi-extinction within 66 years. We discuss the likelihood of such a scenario being reached on the Isle of May, and we recommend that where predator-prey conflicts occur, predation-driven mortality should be regularly quantified to inform conservation management and population viability analyses associated with impact assessments.


Subject(s)
Charadriiformes , Animals , Predatory Behavior , Seasons , Population Dynamics
2.
Bull Entomol Res ; 113(3): 402-411, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36908249

ABSTRACT

Culicoides biting midges (Diptera: Ceratopogonidae) are the main vectors of livestock diseases such as bluetongue (BT) which mainly affect sheep and cattle. In Spain, bluetongue virus (BTV) is transmitted by several Culicoides taxa, including Culicoides imicola, Obsoletus complex, Culicoides newsteadi and Culicoides pulicaris that vary in seasonality and distribution, affecting the distribution and dynamics of BT outbreaks. Path analysis is useful for separating direct and indirect, biotic and abiotic determinants of species' population performance and is ideal for understanding the sensitivity of adult Culicoides dynamics to multiple environmental drivers. Start, end of season and length of overwintering of adult Culicoides were analysed across 329 sites in Spain sampled from 2005 to 2010 during the National Entomosurveillance Program for BTV with path analysis, to determine the direct and indirect effects of land use, climate and host factor variables. Culicoides taxa had species-specific responses to environmental variables. While the seasonality of adult C. imicola was strongly affected by topography, temperature, cover of agro-forestry and sclerophyllous vegetation, rainfall, livestock density, photoperiod in autumn and the abundance of Culicoides females, Obsoletus complex species seasonality was affected by land-use variables such as cover of natural grassland and broad-leaved forest. Culicoides female abundance was the most explanatory variable for the seasonality of C. newsteadi, while C. pulicaris showed that temperature during winter and the photoperiod in November had a strong effect on the start of the season and the length of overwinter period of this species. These results indicate that the seasonal vector-free period (SVFP) in Spain will vary between competent vector taxa and geographic locations, dependent on the different responses of each taxa to environmental conditions.


Subject(s)
Bluetongue virus , Bluetongue , Cattle Diseases , Ceratopogonidae , Sheep Diseases , Cattle , Female , Sheep , Animals , Ceratopogonidae/physiology , Spain , Insect Vectors/physiology , Climate , Seasons , Bluetongue/epidemiology , Bluetongue virus/physiology , Cattle Diseases/epidemiology
3.
Ecol Evol ; 12(9): e9213, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36177129

ABSTRACT

Competition for high-quality breeding sites in colonial species is often intense, such that individuals may invest considerable time in site occupancy even outside the breeding season. The site defense hypothesis predicts that high-quality sites will be occupied earlier and more frequently, consequently those sites will benefit from earlier and more successful breeding. However, few studies relate non-breeding season occupancy to subsequent breeding performance limiting our understanding of the potential life-history benefits of this behavior. Here, we test how site occupancy in the non-breeding season related to site quality, breeding timing, and breeding success in a population of common guillemots Uria aalge, an abundant and well-studied colonially breeding seabird. Using time-lapse photography, we recorded occupancy at breeding sites from October to March over three consecutive non-breeding seasons. We then monitored the successive breeding timing (lay date) and breeding success at each site. On average, sites were first occupied on the 27th October ± 11.7 days (mean ± SD), subsequently occupied on 46 ± 18% of survey days and for 55 ± 15% of the time when at least one site was occupied. Higher-quality sites, sites with higher average historic breeding success, were occupied earlier, more frequently and for longer daily durations thereafter. Laying was earlier at sites that were occupied more frequently and sites occupied earlier were more successful, supporting the site defense hypothesis. A path analysis showed that the return date had a greater or equal effect on breeding success as lay date. Pair level occupancy had no effect on breeding timing or success. The clear effect of non-breeding occupancy of breeding sites on breeding timing and success highlights the benefits of this behavior on demography in this population and the importance of access to breeding sites outside the breeding season in systems where competition for high-quality sites is intense.

4.
J Anim Ecol ; 91(12): 2384-2399, 2022 12.
Article in English | MEDLINE | ID: mdl-36177549

ABSTRACT

Understanding how ecological processes combine to shape population dynamics is crucial in a rapidly changing world. Evidence has been emerging for how fundamental drivers of density dependence in mobile species are related to two differing types of environmental variation-temporal variation in climate, and spatiotemporal variation in food resources. However, to date, tests of these hypotheses have been largely restricted to mid-trophic species in terrestrial environments and thus their general applicability remains unknown. We tested if these same processes can be identified in marine upper trophic level species. We assembled a multi-decadal data set on population abundance of 10 species of colonial seabirds comprising a large component of the UK breeding seabird biomass, and covering diverse phylogenies, life histories and foraging behaviours. We tested for evidence of density dependence in population growth rates using discrete time state-space population models fit to long time-series of observations of abundance at seabird breeding colonies. We then assessed if the strength of density dependence in population growth rates was exacerbated by temporal variation in climate (sea temperature and swell height), and attenuated by spatiotemporal variation in prey resources (productivity and tidal fronts). The majority of species showed patterns consistent with temporal variation in climate acting to strengthen density dependent feedbacks to population growth. However, fewer species showed evidence for a weakening of density dependence with increasing spatiotemporal variation in prey resources. Our findings extend this emerging theory for how different sources of environmental variation may shape the dynamics and regulation of animal populations, demonstrating its role in upper trophic marine species. We show that environmental variation leaves a signal in long-term population dynamics of seabirds with potentially important consequences for their demography and trophic interactions.


Subject(s)
Population Growth , Animals , Population Dynamics
5.
Environ Pollut ; 314: 120269, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36162558

ABSTRACT

Second generation anticoagulant rodenticides (SGARs) are widely used to control rodents around the world. However, contamination by SGARs is detectable in many non-target species, particularly carnivorous mammals or birds-of-prey that hunt or scavenge on poisoned rodents. The SGAR trophic transfer pathway via rodents and their predators/scavengers appears widespread, but little is known of other pathways of SGAR contamination in non-target wildlife. This is despite the detection of SGARs in predators that do not eat rodents, such as specialist bird-eating hawks. We used a Bayesian modelling framework to examine the extent and spatio-temporal trends of SGAR contamination in the livers of 259 Eurasian Sparrowhawks, a specialist bird-eating raptor, in regions of Britain during 1995-2015. SGARs, predominantly difenacoum, were detected in 81% of birds, with highest concentrations in males and adults. SGAR concentrations in birds were lowest in Scotland and higher or increasing in other regions of Britain, which had a greater arable or urban land cover where SGARs may be widely deployed for rodent control. However, there was no overall trend for Britain, and 97% of SGAR residues in Eurasian Sparrowhawks were below 100 ng/g (wet weight), which is a potential threshold for lethal effects. The results have potential implications for the population decline of Eurasian Sparrowhawks in Britain. Fundamentally, the results indicate an extensive and persistent contamination of the avian trophic transfer pathway on a national scale, where bird-eating raptors and, by extension, their prey appear to be widely exposed to SGARs. Consequently, these findings have implications for wildlife contamination worldwide, wherever these common rodenticides are deployed, as widespread exposure of non-target species can apparently occur via multiple trophic transfer pathways involving birds as well as rodents.


Subject(s)
Eagles , Hawks , Raptors , Rodenticides , Male , Animals , Rodenticides/metabolism , Hawks/metabolism , Anticoagulants/metabolism , United Kingdom , Bayes Theorem , Environmental Monitoring , Raptors/metabolism , Eagles/metabolism , Animals, Wild/metabolism , Mammals/metabolism
6.
J Med Entomol ; 58(1): 350-364, 2021 01 12.
Article in English | MEDLINE | ID: mdl-32885822

ABSTRACT

Bluetongue is a viral disease affecting wild and domestic ruminants transmitted by several species of biting midges Culicoides Latreille. The phenology of these insects were analyzed in relation to potential environmental drivers. Data from 329 sites in Spain were analyzed using Bayesian Generalized Linear Mixed Model (GLMM) approaches. The effects of environmental factors on adult female seasonality were contrasted. Obsoletus complex species (Diptera: Ceratopogonidae) were the most prevalent across sites, followed by Culicoides newsteadi Austen (Diptera: Ceratopogonidae). Activity of female Obsoletus complex species was longest in sites at low elevation, with warmer spring average temperatures and precipitation, as well as in sites with high abundance of cattle. The length of the Culicoides imicola Kieffer (Diptera: Ceratopogonidae) female adult season was also longest in sites at low elevation with higher coverage of broad-leaved vegetation. Long adult seasons of C. newsteadi were found in sites with warmer autumns and higher precipitation, high abundance of sheep. Culicoides pulicaris (Linnaeus) (Diptera: Ceratopogonidae) had longer adult periods in sites with a greater number of accumulated degree days over 10°C during winter. These results demonstrate the eco-climatic and seasonal differences among these four taxa in Spain, which may contribute to determining sites with suitable environmental circumstances for each particular species to inform assessments of the risk of Bluetongue virus outbreaks in this region.


Subject(s)
Ceratopogonidae/physiology , Insect Vectors/physiology , Animals , Bluetongue/transmission , Bluetongue virus/physiology , Female , Population Density , Population Dynamics , Seasons , Spain
8.
Parasit Vectors ; 13(1): 265, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32434592

ABSTRACT

BACKGROUND: Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. METHODS: Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. RESULTS: Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. CONCLUSIONS: To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.


Subject(s)
Ceratopogonidae/classification , Genetic Variation , Insect Vectors/classification , Phylogeny , Animals , Ceratopogonidae/virology , Cyclooxygenase 1/genetics , DNA Barcoding, Taxonomic , Europe , Female , Geography , Insect Vectors/virology , Livestock/virology , Sequence Analysis, DNA
9.
Biol Rev Camb Philos Soc ; 92(2): 1128-1141, 2017 May.
Article in English | MEDLINE | ID: mdl-27062094

ABSTRACT

Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small-scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta-analysis of the outcomes of plant-herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between-taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore-plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed-nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed-nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore-plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant-herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top-down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.


Subject(s)
Ecosystem , Herbivory , Plant Physiological Phenomena , Animals , Biomass , Population Density
10.
Sci Rep ; 6: 38940, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27958339

ABSTRACT

Europe has seen frequent outbreaks of Bluetongue (BT) disease since 2006, including an outbreak of BT virus serotype 8 in central France during 2015 that has continued to spread in Europe during 2016. Thus, assessing the potential for BTv-8 spread and determining the optimal deployment of vaccination is critical for contingency planning. We developed a spatially explicit mathematical model of BTv-8 spread in Scotland and explored the sensitivity of transmission to key disease spread parameters for which detailed empirical data is lacking. With parameters at mean values, there is little spread of BTv-8 in Scotland. However, under a "worst case" but still feasible scenario with parameters at the limits of their ranges and temperatures 1 °C warmer than the mean, we find extensive spread with 203,000 sheep infected given virus introduction to the south of Scotland between mid-May and mid-June. Strategically targeted vaccine interventions can greatly reduce BT spread. Specifically, despite BT having most clinical impact in sheep, we show that vaccination can have the greatest impact on reducing BTv infections in sheep when administered to cattle, which has implications for disease control policy.


Subject(s)
Bluetongue virus , Bluetongue , Models, Biological , Vaccination , Animals , Bluetongue/epidemiology , Bluetongue/prevention & control , Cattle , Scotland , Sheep
11.
Environ Sci Technol ; 50(17): 9044-52, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27415607

ABSTRACT

Little is known about long-term ecological responses in lakes following red mud pollution. Among red mud contaminants, arsenic (As) is of considerable concern. Determination of the species of As accumulated in aquatic organisms provides important information about the biogeochemical cycling of the element and transfer through the aquatic food-web to higher organisms. We used coupled ion chromatography and inductively coupled plasma mass spectrometry (ICP-MS) to assess As speciation in tissues of five macrophyte taxa in Kinghorn Loch, U.K., 30 years following the diversion of red mud pollution from the lake. Toxic inorganic As was the dominant species in the studied macrophytes, with As species concentrations varying with macrophyte taxon and tissue type. The highest As content measured in roots of Persicaria amphibia (L.) Gray (87.2 mg kg(-1)) greatly exceeded the 3-10 mg kg(-1) range suggested as a potential phytotoxic level. Accumulation of toxic As species by plants suggested toxicological risk to higher organisms known to utilize macrophytes as a food source.


Subject(s)
Arsenic , Lakes , Environmental Monitoring , Food Chain , Plants
12.
Oecologia ; 179(2): 377-91, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26009244

ABSTRACT

Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.


Subject(s)
Deer/physiology , Ecosystem , Herbivory , Plant Development , Seasons , Animal Nutritional Physiological Phenomena , Animals , Climate , Climate Change , Colorado , Deer/anatomy & histology , Population Dynamics , Species Specificity , Weather
13.
PLoS One ; 9(11): e111876, 2014.
Article in English | MEDLINE | ID: mdl-25386940

ABSTRACT

Since 2006, arboviruses transmitted by Culicoides biting midges (Diptera: Ceratopogonidae) have caused significant disruption to ruminant production in northern Europe. The most serious incursions involved strains of bluetongue virus (BTV), which cause bluetongue (BT) disease. To control spread of BTV, movement of susceptible livestock is restricted with economic and animal welfare impacts. The timing of BTV transmission in temperate regions is partly determined by the seasonal presence of adult Culicoides females. Legislative measures therefore allow for the relaxation of ruminant movement restrictions during winter, when nightly light-suction trap catches of Culicoides fall below a threshold (the 'seasonally vector free period': SVFP). We analysed five years of time-series surveillance data from light-suction trapping in the UK to investigate whether significant inter-specific and yearly variation in adult phenology exists, and whether the SVFP is predictable from environmental factors. Because female vector Culicoides are not easily morphologically separated, inter-specific comparisons in phenology were drawn from male populations. We demonstrate significant inter-specific differences in Culicoides adult phenology with the season of Culicoides scoticus approximately eight weeks shorter than Culicoides obsoletus. Species-specific differences in the length of the SVFP were related to host density and local variation in landscape habitat. When the Avaritia Culicoides females were modelled as a group (as utilised in the SFVP), we were unable to detect links between environmental drivers and phenological metrics. We conclude that the current treatment of Avaritia Culicoides as a single group inhibits understanding of environmentally-driven spatial variation in species phenology and hinders the development of models for predicting the SVFP from environmental factors. Culicoides surveillance methods should be adapted to focus on concentrated assessments of species-specific abundance during the start and end of seasonal activity in temperate regions to facilitate refinement of ruminant movement restrictions thereby reducing the impact of Culicoides-borne arboviruses.


Subject(s)
Arbovirus Infections/veterinary , Ceratopogonidae , Health Policy , Insect Control , Insect Vectors , Animals , Environment , Female , Male , Ruminants , Species Specificity
14.
Sci Rep ; 4: 5746, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25034464

ABSTRACT

First identified in 2011, Schmallenberg virus (SBV) is principally transmitted by Culicoides midges and affects ruminants. Clinical presentation is typified by foetal abnormalities, but despite very high infection rates, relatively few animals present with clinical signs. In this paper we further develop a previously published stochastic mathematical model of SBV spread to investigate the optimal deployment of a vaccine for SBV in Scotland, a country that has experienced only sporadic and isolated cases of SBV. We consider the use of the vaccine under different temperatures and explore the effects of a vector preference for feeding on cattle. We demonstrate that vaccine impact is optimised by targeting it at the high risk areas in the south of Scotland, or vaccinating only cattle. At higher than average temperatures, and hence increased transmission potential, the relative impact of vaccination is considerably enhanced. Vaccine impact is also enhanced if vectors feed preferentially on cattle. These findings are of considerable importance when planning control strategies for SBV and also have important implications for management of other arboviruses such as Bluetongue virus. Environmental determinants and feeding preferences should be researched further to inform development of effective control strategies.


Subject(s)
Bunyaviridae Infections/veterinary , Cattle Diseases/transmission , Orthobunyavirus/immunology , Vaccination , Animals , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/prevention & control , Bunyaviridae Infections/transmission , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Ceratopogonidae/physiology , Ceratopogonidae/virology , Climate , Epidemics , Food Preferences , Insect Vectors/physiology , Insect Vectors/virology , Models, Statistical , Scotland , Seroepidemiologic Studies
15.
Sci Rep ; 3: 1178, 2013.
Article in English | MEDLINE | ID: mdl-23378911

ABSTRACT

During 2011 Schmallenberg virus (SBV) presented as a novel disease of cattle and sheep that had apparently spread through northern Europe over a relatively short period of time, but has yet to infect Scotland. This paper describes the development of a model of SBV spread applied to Scotland in the event of an incursion. This model shows that SBV spread is very sensitive to the temperature, with relatively little spread and few reproductive losses predicted in years with average temperatures but extensive spread (>1 million animals infected) and substantial reproductive losses in the hottest years. These results indicate that it is possible for SBV to spread in Scotland, however spread is limited by climatic conditions and the timing of introduction. Further results show that the transmission kernel shape and extrinsic incubation period parameter have a non-linear effect on disease transmission, so a greater understanding of the SBV transmission parameters is required.


Subject(s)
Cattle Diseases/epidemiology , Orthobunyavirus/growth & development , Animals , Cattle , Cattle Diseases/transmission , Cattle Diseases/virology , Insect Vectors/virology , Models, Theoretical , Scotland/epidemiology , Sheep/virology , Temperature
16.
J Anim Ecol ; 80(6): 1134-44, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21668894

ABSTRACT

1. Studies examining changes in the scheduling of breeding in response to climate change have focused on species with well-defined breeding seasons. Species exhibiting year-round breeding have received little attention and the magnitudes of any responses are unknown. 2. We investigated phenological data for an enclosed feral population of cattle (Bos taurus L.) in northern England exhibiting year-round breeding. This population is relatively free of human interference. 3. We assessed whether the timing of births had changed over the last 60 years, in response to increasing winter and spring temperatures, changes in herd density, and a regime of lime fertilisation. 4. Median birth date became earlier by 1·0 days per year. Analyses of the seasonal distribution of calving dates showed that significantly fewer calves were born in summer (decline from 44% of total births to 20%) and significantly more in winter (increase from 12% to 30%) over the study period. The most pronounced changes occurred in winter, with significant increases in both the proportion and number of births. Winter births arise from conceptions in the previous spring, and we considered models that investigated climate and weather variables associated with the winter preceding and the spring of conceptions. 5. The proportion of winter births was higher when the onset of the plant growing season was earlier during the spring of conceptions. This relationship was much weaker during years when the site had been fertilised with lime, suggesting that increased forage biomass was over-riding the impacts of changing plant phenology. When the onset of the growing season was late, winter births increased with female density. 6. Recruitment estimates from a stage-structured state-space population model were significantly negatively correlated with the proportion of births in the preceding winter, suggesting that calves born in winter are less likely to survive than those born in other seasons. 7. This is one of the first studies to document changes in the phenology of a year-round breeder, suggesting that the impact of climate on the scheduling of biological events may be more extensive than previously thought and that impacts may be negative, even for species with relatively flexible breeding strategies.


Subject(s)
Cattle/physiology , Climate Change , Reproduction , Animals , England , Environment , Female , Male , Models, Biological , Parturition , Population Dynamics , Seasons
17.
Oecologia ; 163(3): 815-24, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20349246

ABSTRACT

Understanding the ways that resource heterogeneity shapes the performance of individuals and the dynamics of populations offers a central challenge in contemporary ecology. Emerging evidence shows that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants, differences that result from spatial and temporal variation in conditions favoring plant growth. Theory predicts that when spatial variation in temperature, nutrients, or moisture results in spatially asynchronous pulses of plant growth, herbivores are able to prolong the period during which they have access to forage of peak nutritional value. Although this idea has substantial support from observational and modeling studies, it has not been examined experimentally. We hypothesized that access to asynchronous resources enhances nutritional status and growth of herbivores and that the magnitude of this effect depends on the scale of access relative to the grain of resources. We tested these hypotheses in mesocosm experiment using the migratory grasshopper, Melanoplus sanguinipes, feeding on young wheat and protein-rich bran as a model system. We demonstrated access to asynchronous pulses in resources enhanced the efficiency of use of high quality resource use and increased growth of individuals by 13%. Disruption of this mechanism when landscapes were fragmented lowered efficiency of resource use and caused growth of individuals to decline by 15%. However, the strength of the effects of fragmentation on herbivore performance depended on the spatial extent of fragmentation relative to the spatial and temporal grain of resource emergence. Our findings add experimental support to modeling and observational studies that have linked herbivore performance to spatial and temporal variation in plant phenology. We also offer evidence that fragmentation can impair herbivore performance, even when the total amount and quality of resources on landscapes remains unchanged.


Subject(s)
Diet/veterinary , Ecosystem , Feeding Behavior/physiology , Grasshoppers/physiology , Plants, Edible/metabolism , Animals , Dietary Fiber/metabolism , Dietary Proteins/metabolism , Food Chain , Models, Biological , Plants, Edible/growth & development , Population Dynamics , Temperature , Water/analysis
18.
Oecologia ; 148(4): 710-9, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16705439

ABSTRACT

Understanding responses of organisms to spatial heterogeneity in resources has emerged as a fundamentally important challenge in contemporary ecology. We examined responses of foraging herbivores to multi-scale heterogeneity in plants. We asked the question, "Is the behavior observed at coarse scales in a patch hierarchy the collective outcome of fine scale behaviors or, alternatively, does the spatial context at coarse scales entrain fine scale behavior?" To address this question we created a nested, two-level patch hierarchy. We examined the effects of the spatial context surrounding a patch on the amount of time herbivores resided in the patch. We developed a set of competing models predicting residence time as a function of the mass of plants contained in a patch and the distance between patches and examined the strength of evidence in our observations for these models. Models that included patch mass and inter-patch distance as independent variables successfully predicted observed residence times (bears: r (2)=0.67-0.76 and mule deer: r (2)=0.33-0.55). Residence times of grizzly bears (Ursus arctos) and mule deer (Odocoileus hemionus) responded to the spatial context surrounding a patch. Evidence ratios of Akaike weights demonstrated that models containing effects of higher levels in the hierarchy on residence time at lower levels received up to 34 times more support in the data than models that failed to consider the higher level context for grizzly bears and up to 48 times more support for mule deer. We conclude that foraging by large herbivores is influenced by more than one level of heterogeneity in patch hierarchies and that simple empirical models offer a viable alternative to optimal foraging models for the prediction of patch residence times.


Subject(s)
Deer/physiology , Feeding Behavior/physiology , Ursidae/physiology , Animals , Female , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...