Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 31(2): 160-7, 1988 Feb 05.
Article in English | MEDLINE | ID: mdl-18581576

ABSTRACT

Six endoglucanases (Endo I, II, III, IV, V, and VI), three exoglucanases (Exo I, II, and III), and a beta-glucosidase (beta-gluc I) isolated from a commercial cellulase preparation of Trichoderma viride origin were examined as to their activities on xylan ex oat spelts. Endo I, II, and III as well as Exo II and III showed no activity toward xylan and were classified as specific glucanases. Less specificity was found for the endoglucanases Endo IV, V, and VI, Exo I, and beta-gluc I, whose enzymes were able to hydrolyze xylan. With respect to product formation these xylanolytic cellulases fit the classification of xylanases generally accepted in the literature. Kinetic experiment with xylan, CM-cellulose, and p-nitrophenyl-beta-D-glucoside revealed that Endo IV, V, an VI and Exo I prefer to hydrolyze beta-1, 4-D-glucosidic linkages. beta-Gluc I showed no clear substrate preference.

2.
Biotechnol Bioeng ; 30(2): 251-7, 1987 Aug 05.
Article in English | MEDLINE | ID: mdl-18581306

ABSTRACT

Adsorption on crystalline cellulose of six endoglucanases (Endo I, II, III, IV, V and VI; 1, 4-beta-D-glucan glucanohydrolase, EC 3.2.1.4) and two exoglucanases (Exo II and III; 1,4-beta-D-glucan cellobiohydrolase, EC 3.2.1.92), purified from a commercial cellulase preparation of Trichoderma viride origin, was studied. Endo I, III, and V adsorbed strongly on Avicel cellulose, while adsorption of Endo II, IV, and VI was much lower. Also, the two exoglucanases could be divided into one enzyme (Exo III) that had a high adsorption affinity and another enzyme (Exo II) that adsorbed only moderately. Adsorption data fitted the Langmuir-type adsorption isotherm. However, adsorption was only partially reversible with respect to dilution. No relation could be found between adsorption affinity and degree of randomness in cellulose hydrolysis, measured as the diversity of released hydrolytic products. Kinetic measurements indicated that only part of the adsorbed enzyme molecules are hydrolytically active.

3.
Eur J Biochem ; 146(2): 301-8, 1985 Jan 15.
Article in English | MEDLINE | ID: mdl-3917923

ABSTRACT

Six endoglucanases (Endo I; II; III; IV; V; VI), three exoglucanases (Exo I; II; III) and a beta-glucosidase (beta-gluc I) were isolated from a commercial cellulase preparation derived from Trichoderma viride, using gel filtration on Bio-Gel, anion exchange on DEAE-Bio-Gel A, cation exchange on SE-Sephadex and affinity chromatography on crystalline cellulose. Molecular masses were determined by polyacrylamide gel electrophoresis. One group of endoglucanases (Endo I, Endo II and Endo IV) with Mr of 50 000, 45 000 and 23 500 were more random in their attack on carboxymethylcellulose than another group (Endo III, Endo V and Endo VI) showing Mr of 58 000, 57 000 and 53 000 respectively. Endo III was identified as a new type of endoglucanase with relatively high activity on crystalline cellulose and moderate activity on carboxymethylcellulose. Exo II and Exo III with Mr of 60 500 and 62 000 respectively showed distinct adsorption affinities on a column of crystalline cellulose and could be eluted by a pH gradient to alkaline regions. These enzymes were cellobiohydrolases as judged by high-pressure liquid chromatography of the products obtained from incubation with H3PO4-swollen cellulose. It was concluded that these exoglucanases are primarily active on newly generated chain ends. Exo I was essentially another type of exoglucanase which in the first instance was able to split off a cellobiose molecule from a chain end and then hydrolyse this molecule in a second step to two glucose units beta-Gluc I was a new type of aryl-beta-D-glucosidase which had no activity on cellobiose. The enzyme had a Mr of 76 000 and was moderately active on CM-cellulose, crystalline cellulose and xylan and highly active on p-nitrophenyl-beta-D-glucose and p-nitrophenyl-beta-D-xylose.


Subject(s)
Cellulase/isolation & purification , Glucosidases/isolation & purification , Glycoproteins/isolation & purification , Glycoside Hydrolases/isolation & purification , beta-Glucosidase/isolation & purification , Cellulase/physiology , Cellulose 1,4-beta-Cellobiosidase , Chemical Phenomena , Chemistry , Chromatography, Affinity , Chromatography, High Pressure Liquid , Glycoside Hydrolases/physiology , Hydrolysis , Isoelectric Focusing , Molecular Conformation , Temperature , Trichoderma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...