Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(19): 12984-12999, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709897

ABSTRACT

Multivalent battery chemistries have been explored in response to the increasing demand for high-energy rechargeable batteries utilizing sustainable resources. Solvation structures of working cations have been recognized as a key component in the design of electrolytes; however, most structure-property correlations of metal ions in organic electrolytes usually build upon favorable static solvation structures, often overlooking solvent exchange dynamics. We here report the ion solvation structures and solvent exchange rates of magnesium electrolytes in various solvents by using multimodal nuclear magnetic resonance (NMR) analysis and molecular dynamics/density functional theory (MD/DFT) calculations. These magnesium solvation structures and solvent exchange dynamics are correlated to the combined effects of several physicochemical properties of the solvents. Moreover, Mg2+ transport and interfacial charge transfer efficiency are found to be closely correlated to the solvent exchange rate in the binary electrolytes where the solvent exchange is tunable by the fraction of diluent solvents. Our primary findings are (1) most battery-related solvents undergo ultraslow solvent exchange coordinating to Mg2+ (with time scales ranging from 0.5 µs to 5 ms), (2) the cation transport mechanism is a mixture of vehicular and structural diffusion even at the ultraslow exchange limit (with faster solvent exchange leading to faster cation transport), and (3) an interfacial model wherein organic-rich regions facilitate desolvation and inorganic regions promote Mg2+ transport is consistent with our NMR, electrochemistry, and cryogenic X-ray photoelectron spectroscopy (cryo-XPS) results. This observed ultraslow solvent exchange and its importance for ion transport and interfacial properties necessitate the judicious selection of solvents and informed design of electrolyte blends for multivalent electrolytes.

2.
JACS Au ; 2(4): 917-932, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35557755

ABSTRACT

Efforts to expand the technological capability of batteries have generated increased interest in divalent cationic systems. Electrolytes used for these electrochemical applications often incorporate cyclic ethers as electrolyte solvents; however, the detailed solvation environments within such systems are not well-understood. To foster insights into the solvation structures of such electrolytes, Ca(TFSI)2 and Zn(TFSI)2 dissolved in tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran were investigated through multi-nuclear magnetic resonance spectroscopy (17O, 43Ca, and 67Zn NMR) combined with quantum chemistry modeling of NMR chemical shifts. NMR provides spectroscopic fingerprints that readily couple with quantum chemistry to identify a set of most probable solvation structures based on the best agreement between the theoretically predicted and experimentally measured values of chemical shifts. The multi-nuclear approach significantly enhances confidence that the correct solvation structures are identified due to the required simultaneous agreement between theory and experiment for multiple nuclear spins. Furthermore, quantum chemistry modeling provides a comparison of the solvation cluster formation energetics, allowing further refinement of the preferred solvation structures. It is shown that a range of solvation structures coexist in most of these electrolytes, with significant molecular motion and dynamic exchange among the structures. This level of solvation diversity correlates with the solubility of the electrolyte, with Zn(TFSI)2/THF exhibiting the lowest degree of each. Comparisons of analogous Ca2+ and Zn2+ solvation structures reveal a significant cation size effect that is manifested in significantly reduced cation-solvent bond lengths and thus stronger solvent bonding for Zn2+ relative to Ca2+. The strength of this bonding is further reduced by methylation of the cyclic ether ring. Solvation shells containing anions are energetically preferred in all the studied electrolytes, leading to significant quantities of contact ion pairs and consequently neutrally charged clusters. It is likely that the transport and interfacial de-solvation/re-solvation properties of these electrolytes are directed by these anion interactions. These insights into the detailed solvation structures, cation size, and solvent effects, including the molecular dynamics, are fundamentally important for the rational design of electrolytes in multivalent battery electrolyte systems.

3.
Solid State Nucl Magn Reson ; 102: 31-35, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31295629

ABSTRACT

We present a novel nuclear magnetic resonance (NMR) probe design focused on optimizing the temperature gradient across the sample for high temperature magic angle spinning (MAS) experiments using standard rotors. Computational flow dynamics (CFD) simulations were used to assess and optimize the temperature gradient across the sample under MAS conditions. The chemical shift and linewidth of 207Pb direct polarization in lead nitrate were used to calibrate the sample temperature and temperature gradient, respectively. A temperature gradient of less than 3 °C across the sample was obtained by heating bearing gas flows and adjusting its temperature and flow rate during variable temperature (VT) experiments. A maximum temperature of 350 °C was achieved in this probe using a Varian 5 mm MAS rotor with standard Vespel drive tips and end caps. Time-resolved 13C and 1H MAS NMR experiments were performed at 325 °C and 60 bar to monitor an in-situ mixed phase reverse water gas shift reaction, industrial synthesis of CH3OH from a mixture of CO2 and H2 with a Cu/ZnO/Al2O3 catalyst, demonstrating the first in-situ NMR monitoring of a chemical system at temperatures higher than 250 °C in a pressurized environment. The combination of this high-temperature probe and high-pressure rotors will allow for in-situ NMR studies of a great variety of chemical reactions that are inaccessible to conventional NMR setup.

4.
Magn Reson Imaging ; 56: 37-44, 2019 02.
Article in English | MEDLINE | ID: mdl-30482639

ABSTRACT

A new MAS-NMR rotor (the WHiMS rotor) has been developed which can reach pressures of 400 bar at 20 °C or 225 bar at 250 °C. These rotors are ideal for mixed phase systems such as a reaction using a solid catalyst with a liquid/supercritical solvent topped with high pressure gas in the head space. After solid and liquid portions of the sample are loaded, the rotor is capped with an o-ring equipped polymer bushing that snaps into a mating groove in the rotor. The bushings incorporate a check valve into the sealing mechanism which allows for pressurization without mechanical manipulation - they will allow gas to flow in but not out. This WHiMS rotor design has enabled experiments on a wide variety of biotic and abiotic mixed-phase systems. Geochemical systems have also been studied, for example, adsorption and confinement studies of supercritical methane/CO2 in clays and other minerals which display pressure dependent 13C chemical shifts. Example data from other mixed-phase chemical and microbial systems are reported. These include monitoring metabolite conversion of extremophilic bacteria found in subsurface systems at elevated pressures and real-time operando reactions in catalysis systems - with liquid-quality resolution for 1H and 13C NMR spectra.


Subject(s)
Carbon Dioxide/analysis , Hot Temperature , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Biomass , Equipment Design , Hydraulic Fracking/instrumentation , Pressure
5.
Appl Microbiol Biotechnol ; 98(19): 8367-75, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24946863

ABSTRACT

An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.


Subject(s)
Bioreactors/microbiology , Moorella/chemistry , Moorella/metabolism , Ethanol/metabolism , Fermentation , Magnetic Resonance Spectroscopy , Methanol/metabolism , Moorella/genetics , Moorella/growth & development , Xylose/metabolism
6.
J Magn Reson ; 226: 64-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23220181

ABSTRACT

High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low (1)H and (13)C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe(2+))(3)Si(2)O(5)(OH)(4)), in contact with liquid water in water-saturated supercritical CO(2) (scCO(2)) at 150 bar and 50°C. This mineral is relevant to the deep geologic disposal of CO(2), but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

7.
Phys Chem Chem Phys ; 14(7): 2137-43, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22025270

ABSTRACT

A large-sample-volume constant-flow magic angle sample spinning (CF-MAS) NMR probe is reported for in situ studies of the reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions. In our approach, the reactants are introduced into the catalyst bed using a fixed tube at one end of the MAS rotor while a second fixed tube, linked to a vacuum pump, is attached at the other end of the rotor. The pressure difference between both ends of the catalyst bed inside the sample cell space forces the reactants flowing through the catalyst bed, which improves the diffusion of the reactants and products. This design allows the use of a large sample volume for enhanced sensitivity and thus permitting in situ(13)C CF-MAS studies at natural abundance. As an example of application, we show that reactants, products and reaction transition states associated with the 2-butanol dehydration reaction over a mesoporous silicalite supported heteropoly acid catalyst (HPA/meso-silicalite-1) can all be detected in a single (13)C CF-MAS NMR spectrum at natural abundance. Coke products can also be detected at natural (13)C abundance and under the stopped flow condition. Furthermore, (1)H CF-MAS NMR is used to identify the surface functional groups of HPA/meso-silicalite-1 under the condition of in situ drying. We also show that the reaction dynamics of 2-butanol dehydration using HPA/meso-silicalite-1 as a catalyst can be explored using (1)H CF-MAS NMR.

8.
J Magn Reson ; 212(2): 378-85, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21862372

ABSTRACT

A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Bicarbonates/chemistry , Carbon Dioxide/chemistry , Magnetic Resonance Spectroscopy/instrumentation , Silicon Compounds/chemistry , Water/chemistry
9.
J Am Chem Soc ; 132(47): 16727-9, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21058720

ABSTRACT

We have examined the antiferromagneticly coupled bis(µ-oxo)dimanganese(IV) complex [Mn(2)O(2)(salpn)(2)] (1) with (55)Mn solid-state NMR at cryogenic temperatures and first-principle theory. The extracted values of the (55)Mn quadrupole coupling constant, C(Q), and its asymmetry parameter, η(Q), for 1 are 24.7 MHz and 0.43, respectively. Further, there was a large anisotropic contribution to the shielding of each Mn(4+), i.e. a Δσ of 3375 ppm. Utilizing broken symmetry density functional theory, the predicted values of the electric field gradient (EFG) or equivalently the C(Q) and η(Q) at ZORA, PBE QZ4P all electron level of theory are 23.4 MHz and 0.68, respectively, in good agreement with experimental observations.


Subject(s)
Biomimetic Materials/chemistry , Magnetic Resonance Spectroscopy/methods , Manganese Compounds/chemistry , Organometallic Compounds/chemistry , Oxides/chemistry , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Models, Molecular , Molecular Conformation , Temperature
10.
J Magn Reson ; 198(1): 105-10, 2009 May.
Article in English | MEDLINE | ID: mdl-19246221

ABSTRACT

An isotropic-anisotropic shift 2D correlation spectroscopy is introduced that combines the advantages of both magic angle turning (MAT) and magic angle hopping (MAH) technologies. In this new approach, denoted DMAT for "discrete magic angle turning", the sample rotates clockwise followed by an anticlockwise rotation of exactly the same amount with each rotation less or equal than 360 degrees but greater than 240 degrees , with the rotation speed being constant only for times related to the evolution dimension. This back and forth rotation is repeated and synchronized with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. For any spin-interaction of rank-2 such as chemical shift anisotropy, isotropic magnetic susceptibility interaction, and residual homo-nuclear dipolar interaction in biological fluid samples, the projection along the isotropic dimension is a high resolution spectrum. Since a less than 360 degrees sample rotation is involved, the design potentially allows for in situ control over physical parameters such as pressure, flow conditions, feed compositions, and temperature so that true in situ NMR investigations can be carried out.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Adamantane/analysis , Algorithms , Anisoles/analysis , Anisotropy , Magnetic Resonance Spectroscopy/instrumentation , Powders/analysis , Software
11.
J Magn Reson ; 168(1): 66-74, 2004 May.
Article in English | MEDLINE | ID: mdl-15082250

ABSTRACT

Solid-state NMR spectroscopy of half-integer quadrupolar nuclides has received a lot of interest recently with the advent of new methodologies and higher magnetic fields. We present here the extension of our previous low temperature method to an 18.8T system. This new probe entailed a total redesign including a cross coil and variable capacitors that are operational at cryogenic temperatures. The limitations to sensitivity are also discussed; including a new diode network, the utilization of a cryogenic band pass filter, and the consequences of the RF profiles of the coil. Further, details of the spectroscopy of quadrupolar nuclei in a protein are discussed, such as the observation of the outer transitions and how to distinguish them from the desired +/-1/2 transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...