Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genome ; 39(3): 605-8, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8675004

ABSTRACT

A 2RL.2BS wheat-rye translocation, present in the wheat germplasm line Hamlet, carries a gene for resistance to Hessian fly biotype L, one of the most virulent biotypes presently encountered in wheat production environments. Unlike several other wheat-rye chromosome translocations common in wheat breeding programs, 2RL lacks genes encoding storage proteins or other easily selected markers. Oligonucleotide primers synthesized from published sequences derived from the R173 family of moderately repetitive rye DNA were used in the DNA polymerase chain reaction (PCR) to identify specific markers for 2RL. The same primers, when used with DNA extracted from additional wheat-rye translocation lines of importance to the wheat breeding community, gave distinctive PCR products for each genotype. The single primer pair, PAWS5 and PAWS6, may, therefore, have wide applicability for the identification of wheat-rye chromosomal translocations presently encountered in wheat breeding populations.


Subject(s)
Polymerase Chain Reaction/methods , Secale/genetics , Translocation, Genetic , Triticum/genetics , Base Sequence , DNA Primers , DNA, Plant , Molecular Sequence Data
2.
Theor Appl Genet ; 90(3-4): 571-7, 1995 Mar.
Article in English | MEDLINE | ID: mdl-24173953

ABSTRACT

The wild diploid goatgrass, Triticum tauschii (Coss.) Schmal., is an important source of genes for resistance to both diseases and insects in common wheat (Triticum aestivum L.) We have evaluated grain yield, kernel weight, protein concentration, and kernel hardness of 641 BC2 F1-derived families from direct crosses involving four T. aestivum cultivars and 13 T. tauschii accessions over 2 years and at two Kansas, USA, locations. On average, T. tauschii germplasm depressed grain yield and increased protein concentration, whereas kernel weight was affected either positively or negatively, depending on the T. tauschii parent. Three T. tauschii parents produced a large proportion of families with very soft endosperm. Some variation among progeny of different T. tauschii parents resulted from the segregation of genes for resistance to leaf rust (caused by Puccinia recondita Rob. ex Desm.). This study confirmed that random BC2-derived families can be used to evaluate the effects of T. tauschii genes in the field. This methodology, although laborious, can provide useful information which is not obtainable by the screening of T. tauschii accessions themselves.

3.
Theor Appl Genet ; 79(3): 385-9, 1990 May.
Article in English | MEDLINE | ID: mdl-24226358

ABSTRACT

Four wheat-rye lines derived from a cross between hexaploid wheat 'ND 7532' and 'Chaupon' rye were homogeneous for resistance to biotype L of the Hessian fly,Mayetiola destructor. Because the wheat parent was susceptible and the rye parent was resistant to larval feeding, resistance was derived from rye. Resistance of 'Chaupon' and the wheat-rye lines was expressed as larval antibiosis. First-instar larvae died after feeding on plants. Chromosomal analyses using C- and N-banding techniques were performed on plants of each line to identify genomes and structural changes of chromosomes. Results showed that two of the resistant lines were chromosome addition lines carrying either the complete rye chromosome,2R, or only the long arm of2R. The other two resistant lines were identified as being2BS/ 2RL wheat-rye translocation lines. It was concluded, therefore, that the long arm of rye chromosome2R carries a gene or gene complex that conditions antibiosis to Hessian fly larvae and, in the2BS/2RL translocation lines, this rye chromatin is cytologically stable and can be used directly in wheat breeding programs.

4.
Plant Physiol ; 90(2): 643-7, 1989 Jun.
Article in English | MEDLINE | ID: mdl-16666821

ABSTRACT

Preharvest sprouting of wheat (Triticum aestivum L.) is associated with inadequate seed dormancy. Although abscisic acid (ABA) has often been suggested to play a central role in developing seed, its involvement in dormancy of mature seed lacks firm experimental evidence and endogenous ABA levels are not well correlated with germinability. We examined genotypic and temporal variation in wheat seed and embryo germination responses to ABA and determined whether differential sensitivity of embryos to ABA extended to growth of embryo-derived calli. Germination of Parker 76 caryopses, which have little dormancy at maturity, was only slightly inhibited by ABA, whereas germination of Clark's Cream, a highly dormant genotype, was greatly inhibited. Responsiveness of caryopses to ABA and dormancy of seeds decreased concurrently during afterripening. Germination of embryos excised from dormant and nondormant seeds was more responsive to ABA but otherwise was similar to that of caryopses, indicating that differential response to ABA occurs in the embryo. Growth of calli derived from immature embryos of two sprouting-susceptible wheat genotypes exceeded growth of calli from Clark's Cream, but no distinct differences in response to ABA among the genotypes were apparent. We concluded that the action of ABA is similar in developing and mature seeds, that genotypic and temporal variation in embryo responsiveness to endogenous ABA may be involved in dormancy, and that ABA probably acts in concert with other endogenous constituents.

5.
Theor Appl Genet ; 78(5): 625-32, 1989 Nov.
Article in English | MEDLINE | ID: mdl-24225821

ABSTRACT

The ability of immature embryos of wheat (Triticum aestivum L.) to respond in cell culture was examined in crosses between the 'Wichita' monosomic series and a highly regenerable line, 'ND7532'. Segregation in disomic controls and 13 monosomic families showed a good fit to a monogenic ratio indicating a qualitative mode of inheritance. Segregation in the cross involving monosomic 2D showed a high frequency of regeneration (93.6%) and high callus growth rate (1.87 g/90 days) indicating that 2D is a critical chromosome. Modifying genes may be located on other chromosomes. Substitution of chromosomes from a low regenerable cultivar 'Vona' further indicated that the group 2 chromosomes, in particular chromosome 2D, possess genetic factors promoting callus growth and regeneration.

6.
Theor Appl Genet ; 78(6): 783-7, 1989 Dec.
Article in English | MEDLINE | ID: mdl-24226006

ABSTRACT

The ability of immature embryos of wheat (Triticum aestivum L.) to respond to tissue culture has been shown to involve the group 2 chromosomes. The available group 2 ditelosomic and nullisomic-tetrasomic lines of 'Chinese Spring' wheat were used to determine the chromosome arm location and chromosome dosage effect associated with the expression of tissue culture response (TCR). Significant differences were found between the aneuploid lines and the euploid control for the expression of both regenerable callus formation and callus growth rate. A model is proposed suggesting that a major TCR gene is located on 2DL and that 2AL and 2BS possess minor TCR genes. Furthermore, a major regulatory gene controlling the expression of TCR genes may be located on chromosome 2BL.

7.
Theor Appl Genet ; 71(6): 784-90, 1986 Mar.
Article in English | MEDLINE | ID: mdl-24247703

ABSTRACT

Fertile r0 plants of the winter wheat line ND7532 (Triticum aestivum L.) were regenerated from callus tissue after 60-190 days in culture. Seeds produced from these self-pollinated plants were planted in the field. Of the 5586 R1 plants, 32 differed for one or more agronomic traits from plants not passed through tissue culture process. Gliadin electrophoregrams were prepared from bulk samples of R2 seed from these 32 plants. Four of the 32 produced gliadin patterns different from controls, so 12 seeds of each of these four lines were examined individually. Three of the four mutant lines were fixed for the presence of a mutant protein of 50 relative mobility units (RMU) and the corresponding loss of a parental protein of 26 RMU. The remaining line segregated for the presence/absence of band 50 and the corresponding loss/retention of band 26. The mutant protein of 50 RMU was never seen in control plants. This indicated that either band 50 was coded for by a mutant gene allelic to the gene that coded for band 26 or that bands 26 and 50 were coded for by two different structural alleles under the control of a common regulatory locus. Each of the 12 seeds from the four mutant lines contained a prominent protein band at 30 (RMU), which was only observed as a faint band in one control seed. The types of variation in gliadin patterns observed in somaclones of ND7532 were similar to those reported for the line 'Yaqui 50E', except that, gliadin changes occurred less frequently in ND7532.

8.
Theor Appl Genet ; 68(6): 547-54, 1984 Oct.
Article in English | MEDLINE | ID: mdl-24257829

ABSTRACT

The spontaneous occurrence of chromosome breaks, deletions, and translocations in plant tissue cultures is well documented. This study investigated the usefulness of tissue culture as a method of introgressing alien genes into wheat. Wheat X rye hybrids were regenerated from embryo scutellar calli maintained in culture for 222 days. The regenerated seedlings then were treated with colchicine to produce amphidiploids (AABBDDRR). The karyotypes of ten amphidiploids were analyzed by C-banding to determine chromosome structural changes that occurred during tissue culture. Three wheat/rye and one wheat/wheat chromosome translocations, seven deletions, and five amplifications of heterochromatin bands of rye chromosomes were identified. One amphidiploid contained a reciprocal translocation between wheat chromosome 4D and rye chromosome 1R. Non-reciprocal translocations between 2B and 3R, and between an unidentified wheat chromosome and 2R, were found independently in two amphidiploids. An additional plant had a translocation between wheat chromosomes 6B and 5A. All deletions involving rye chromosomes were noted in all 10 amphidiploids. Twelve of the 13 breakpoints in chromosomes involved in translocations and deletions occurred in heterochromatin. Amplification of heterochromatin bands on 2RL and 7RL chromosome arms also was observed in five plants. These results indicate a high degree of chromosome structural change induced by tissue culture. Therefore, tissue culture may be a useful tool in alien gene introgression and manipulation of heterochromatin in triticale improvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...