Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Pharmaceutics ; 16(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38794258

ABSTRACT

Monoclonal antibodies are commonly engineered with an introduction of Met428Leu and Asn434Ser, known as the LS mutation, in the fragment crystallizable region to improve pharmacokinetic profiles. The LS mutation delays antibody clearance by enhancing binding affinity to the neonatal fragment crystallizable receptor found on endothelial cells. To characterize the LS mutation for monoclonal antibodies targeting HIV, we compared pharmacokinetic parameters between parental versus LS variants for five pairs of anti-HIV immunoglobin G1 monoclonal antibodies (VRC01/LS/VRC07-523LS, 3BNC117/LS, PGDM1400/LS PGT121/LS, 10-1074/LS), analyzing data from 16 clinical trials of 583 participants without HIV. We described serum concentrations of these monoclonal antibodies following intravenous or subcutaneous administration by an open two-compartment disposition, with first-order elimination from the central compartment using non-linear mixed effects pharmacokinetic models. We compared estimated pharmacokinetic parameters using the targeted maximum likelihood estimation method, accounting for participant differences. We observed lower clearance rate, central volume, and peripheral volume of distribution for all LS variants compared to parental monoclonal antibodies. LS monoclonal antibodies showed several improvements in pharmacokinetic parameters, including increases in the elimination half-life by 2.7- to 4.1-fold, the dose-normalized area-under-the-curve by 4.1- to 9.5-fold, and the predicted concentration at 4 weeks post-administration by 3.4- to 7.6-fold. Results suggest a favorable pharmacokinetic profile of LS variants regardless of HIV epitope specificity. Insights support lower dosages and/or less frequent dosing of LS variants to achieve similar levels of antibody exposure in future clinical applications.

2.
Lancet HIV ; 11(5): e285-e299, 2024 May.
Article in English | MEDLINE | ID: mdl-38692824

ABSTRACT

BACKGROUND: An effective HIV vaccine will most likely need to have potent immunogenicity and broad cross-subtype coverage. The aim of the HIV Vaccine Trials Network (HVTN) 124 was to evaluate safety and immunogenicity of a unique polyvalent DNA-protein HIV vaccine with matching envelope (Env) immunogens. METHODS: HVTN 124 was a randomised, phase 1, placebo-controlled, double-blind study, including participants who were HIV seronegative and aged 18-50 years at low risk for infection. The DNA vaccine comprised five plasmids: four copies expressing Env gp120 (clades A, B, C, and AE) and one gag p55 (clade C). The protein vaccine included four DNA vaccine-matched GLA-SE-adjuvanted recombinant gp120 proteins. Participants were enrolled across six clinical sites in the USA and were randomly assigned to placebo or one of two vaccine groups (ie, prime-boost or coadministration) in a 5:1 ratio in part A and a 7:1 ratio in part B. Vaccines were delivered via intramuscular needle injection. The primary outcomes were safety and tolerability, assessed via frequency, severity, and attributability of local and systemic reactogenicity and adverse events, laboratory safety measures, and early discontinuations. Part A evaluated safety. Part B evaluated safety and immunogenicity of two regimens: DNA prime (administered at months 0, 1, and 3) with protein boost (months 6 and 8), and DNA-protein coadministration (months 0, 1, 3, 6, and 8). All randomly assigned participants who received at least one dose were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT03409276) and is closed to new participants. FINDINGS: Between April 19, 2018 and Feb 13, 2019, 60 participants (12 in part A [five men and seven women] and 48 in part B [21 men and 27 women]) were enrolled. All 60 participants received at least one dose, and 14 did not complete follow-up (six of 21 in the prime-boost group and eight of 21 in the coadminstration group). 11 clinical adverse events deemed by investigators as study-related occurred in seven of 48 participants in part B (eight of 21 in the prime-boost group and three of 21 in the coadministration group). Local reactogenicity in the vaccine groups was common, but the frequency and severity of reactogenicity signs or symptoms did not differ between the prime-boost and coadministration groups (eg, 20 [95%] of 21 in the prime-boost group vs 21 [100%] of 21 in the coadministration group had either local pain or tenderness of any severity [p=1·00], and seven [33%] vs nine [43%] had either erythema or induration [p=0·97]), nor did laboratory safety measures. There were no delayed-type hypersensitivity reactions or vasculitis or any severe clinical adverse events related to vaccination. The most frequently reported systemic reactogenicity symptoms in the active vaccine groups were malaise or fatigue (five [50%] of ten in part A and 17 [81%] of 21 in the prime-boost group vs 15 [71%] of 21 in the coadministration group in part B), headache (five [50%] and 18 [86%] vs 12 [57%]), and myalgia (four [40%] and 13 [62%] vs ten [48%]), mostly of mild or moderate severity. INTERPRETATION: Both vaccine regimens were safe, warranting evaluation in larger trials. FUNDING: US National Institutes of Health and US National Institute of Allergy and Infectious Diseases.


Subject(s)
AIDS Vaccines , HIV Antibodies , HIV Infections , HIV-1 , Vaccines, DNA , Humans , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , AIDS Vaccines/adverse effects , Adult , Male , Female , Double-Blind Method , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Vaccines, DNA/adverse effects , HIV Infections/prevention & control , HIV Infections/immunology , Middle Aged , Young Adult , HIV Antibodies/blood , Adolescent , HIV-1/immunology , United States , Immunization, Secondary , Immunogenicity, Vaccine , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/genetics , Antibodies, Neutralizing/blood
4.
PLoS Med ; 21(3): e1004360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502656

ABSTRACT

BACKGROUND: Adjuvants are widely used to enhance and/or direct vaccine-induced immune responses yet rarely evaluated head-to-head. Our trial directly compared immune responses elicited by MF59 versus alum adjuvants in the RV144-like HIV vaccine regimen modified for the Southern African region. The RV144 trial of a recombinant canarypox vaccine vector expressing HIV env subtype B (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost adjuvanted with alum is the only trial to have shown modest HIV vaccine efficacy. Data generated after RV144 suggested that use of MF59 adjuvant might allow lower protein doses to be used while maintaining robust immune responses. We evaluated safety and immunogenicity of an HIV recombinant canarypox vaccine vector expressing HIV env subtype C (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost (gp120) adjuvanted with alum (ALVAC-HIV+gp120/alum) or MF59 (ALVAC-HIV+gp120/MF59) or unadjuvanted (ALVAC-HIV+gp120/no-adjuvant) and a regimen where ALVAC-HIV+gp120 adjuvanted with MF59 was used for the prime and boost (ALVAC-HIV+gp120/MF59 coadministration). METHODS AND FINDINGS: Between June 19, 2017 and June 14, 2018, 132 healthy adults without HIV in South Africa, Zimbabwe, and Mozambique were randomized to receive intramuscularly: (1) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/MF59 (months 3, 6, and 12), n = 36; (2) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/alum (months 3, 6, and 12), n = 36; (3) 4 doses of ALVAC-HIV+gp120/MF59 coadministered (months 0, 1, 6, and 12), n = 36; or (4) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/no adjuvant (months 3, 6, and 12), n = 24. Primary outcomes were safety and occurrence and mean fluorescence intensity (MFI) of vaccine-induced gp120-specific IgG and IgA binding antibodies at month 6.5. All vaccinations were safe and well-tolerated; increased alanine aminotransferase was the most frequent related adverse event, occurring in 2 (1.5%) participants (1 severe, 1 mild). At month 6.5, vaccine-specific gp120 IgG binding antibodies were detected in 100% of vaccinees for all 4 vaccine groups. No significant differences were seen in the occurrence and net MFI of vaccine-specific IgA responses between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/alum-prime-boost groups or between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/MF59 coadministration groups. Limitations were the relatively small sample size per group and lack of evaluation of higher gp120 doses. CONCLUSIONS: Although MF59 was expected to enhance immune responses, alum induced similar responses to MF59, suggesting that the choice between these adjuvants may not be critical for the ALVAC+gp120 regimen. TRIAL REGISTRATION: HVTN 107 was registered with the South African National Clinical Trials Registry (DOH-27-0715-4894) and ClinicalTrials.gov (NCT03284710).


Subject(s)
AIDS Vaccines , Alum Compounds , HIV Infections , HIV-1 , Polysorbates , Squalene , Adult , Humans , Adjuvants, Immunologic , AIDS Vaccines/adverse effects , HIV Antibodies , HIV Infections/prevention & control , Immunogenicity, Vaccine , Immunoglobulin A , Immunoglobulin G , Vaccines, Combined , Vaccines, Synthetic
5.
medRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260276

ABSTRACT

Background: Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the only bnAb HIV prevention efficacy studies to date, the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. Greater efficacy is required before passively administered bnAbs become a viable option for HIV prevention; furthermore subcutaneous (SC) or intramuscular (IM) administration may be preferred. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. Methods: Participants were recruited between 02 February 2018 and 09 October 2018. 124 healthy participants without HIV were randomized to receive five VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), SC (T4: 2.5 mg/kg, T5: 5 mg/kg) or IM (T6: 2.5 mg/kg or P6: placebo) routes at four-month intervals. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA after the first dose through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum pharmacokinetics. Neutralization activity was measured in a TZM-bl assay and anti-drug antibodies (ADA) were assayed using a tiered bridging assay testing strategy. Results: Injections were well-tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusions were generally well-tolerated, with infusion reactions reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals) following the first administration were 29.0 µg/mL (25.2, 33.4), 58.5 µg/mL (49.4, 69.3), and 257.2 µg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 µg/mL (8.8, 13.3) and 22.8 µg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 µg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM concentrations immediately prior to the second administration were 3.4 µg/mL (2.5, 4.6), 6.5 µg/mL (5.6, 7.5), and 27.2 µg/mL (23.9, 31.0) with IV dosing; 0.97 µg/mL (0.65, 1.4) and 3.1 µg/mL (2.2, 4.3) with SC dosing, and 2.6 µg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titres, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titre ADA at a lone timepoint. VRC07-523LS has an estimated mean half-life of 42 days (95% CI: 40.5, 43.5), approximately twice as long as VRC01. Conclusions: VRC07-523LS was safe and well-tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens.

6.
Nat Commun ; 14(1): 8299, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097552

ABSTRACT

The Antibody Mediated Prevention (AMP) trials (NCT02716675 and NCT02568215) demonstrated that passive administration of the broadly neutralizing monoclonal antibody VRC01 could prevent some HIV-1 acquisition events. Here, we use mathematical modeling in a post hoc analysis to demonstrate that VRC01 influenced viral loads in AMP participants who acquired HIV. Instantaneous inhibitory potential (IIP), which integrates VRC01 serum concentration and VRC01 sensitivity of acquired viruses in terms of both IC50 and IC80, follows a dose-response relationship with first positive viral load (p = 0.03), which is particularly strong above a threshold of IIP = 1.6 (r = -0.6, p = 2e-4). Mathematical modeling reveals that VRC01 activity predicted from in vitro IC80s and serum VRC01 concentrations overestimates in vivo neutralization by 600-fold (95% CI: 300-1200). The trained model projects that even if future therapeutic HIV trials of combination monoclonal antibodies do not always prevent acquisition, reductions in viremia and reservoir size could be expected.


Subject(s)
HIV Infections , HIV-1 , Humans , Antibodies, Neutralizing , Viral Load , HIV Antibodies , Models, Theoretical
7.
J Infect Dis ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37795976

ABSTRACT

BACKGROUND: HVTN 120 is a phase 1/2a randomized double-blind placebo-controlled HIV vaccine trial that evaluated the safety and immunogenicity of ALVAC-HIV (vCP2438) and MF59- or AS01B-adjuvanted bivalent subtype C gp120 Env protein at two dose levels in healthy HIV-uninfected adults. Trial registration URL https://clinicaltrials.gov/ct2/show/NCT03122223 and registration number NCT03122223. METHODS: Participants received ALVAC-HIV (vCP2438) alone or placebo at months 0 and 1. At months 3 and 6, participants received either placebo, ALVAC-HIV (vCP2438) with 200µg of bivalent subtype C gp120 adjuvanted with MF59 or AS01B, or ALVAC-HIV (vCP2438) with 40µg of bivalent subtype C gp120 adjuvanted with AS01B. Primary outcomes were safety and immune responses. RESULTS: We enrolled 160 participants, 55% females, 18-40 years old (median age 24 years) of whom 150 received vaccine and 10 placebo. Vaccines were generally safe and well tolerated. At months 6.5 and 12, CD4+ T-cell response rates and magnitudes were higher in the AS01B-adjuvanted groups than in the MF59-adjuvanted group. At month 12, HIV-specific Env-gp120 binding antibody response magnitudes in the 40µg gp120/AS01B group were higher than in either of the 200µg gp120 groups. CONCLUSIONS: The 40µg dose gp120/AS01B regimen elicited the highest CD4+ T-cell and binding antibody responses.

8.
Lancet HIV ; 10(10): e653-e662, 2023 10.
Article in English | MEDLINE | ID: mdl-37802566

ABSTRACT

BACKGROUND: Preclinical and clinical studies suggest that combinations of broadly neutralising antibodies (bnAbs) targeting different HIV envelope epitopes might be required for sufficient prevention of infection. We aimed to evaluate the dual and triple anti-HIV bnAb combinations of PGDM1400 (V2 Apex), PGT121 (V3 glycan), 10-1074 (V3 glycan), and VRC07-523LS (CD4 binding site). METHODS: In this phase 1 trial (HVTN 130/HPTN 089), adults without HIV were randomly assigned (1:1:1) to three dual-bnAb treatment groups simultaneously, or the triple-bnAb group, receiving 20 mg/kg of each antibody administered intravenously at four centres in the USA. Participants received a single dose of PGT121 + VRC07-523LS (treatment one; n=6), PGDM1400 + VRC07-523LS (treatment two; n=6), or 10-1074 + VRC07-523LS (treatment three; n=6), and two doses of PGDM1400 + PGT121 + VRC07-523LS (treatment four; n=9). Primary outcomes were safety, pharmacokinetics, and neutralising activity. Safety was determined by monitoring for 60 min after infusions and throughout the study by collecting laboratory assessments (ie, blood count, chemistry, urinalysis, and HIV), and solicited and unsolicited adverse events (via case report forms and participant diaries). Serum concentrations of each bnAb were measured by binding antibody assays on days 0, 3, 6, 14, 28, 56, 112, 168, 224, 280, and 336, and by serum neutralisation titres against Env-pseudotyped viruses on days 0, 3, 28, 56, and 112. Pharmacokinetic parameters were estimated by use of two-compartment population pharmacokinetic models; combination bnAb neutralisation titres were directly measured and assessed with different interaction models. This trial is registered with ClinicalTrials.gov, NCT03928821, and has been completed. FINDINGS: 27 participants were enrolled from July 31, to Dec 20, 2019. The median age was 26 years (range 19-50), 16 (58%) of 27 participants were assigned female sex at birth, and 24 (89%) participants were non-Hispanic White. Infusions were safe and well tolerated. There were no statistically significant differences in pharmacokinetic patterns between the dual and triple combinations of PGT121, PGDM1400, and VRC07-523LS. The median estimated elimination half-lives of PGT121, PGDM1400, 10-1074, and VRC07-523LS were 32·2, 25·4, 27·5, and 52·9 days, respectively. Neutralisation coverage against a panel of 12 viruses was greater in the triple-bnAb versus dual-bnAb groups: area under the magnitude-breadth curve at day 28 was 3·1, 2·9, 3·0, and 3·4 for treatments one to four, respectively. The Bliss-Hill multiplicative interaction model, which assumes complementary neutralisation with no antagonism or synergism among the bnAbs, best described combination bnAb titres in the dual-bnAb and triple-bnAb groups. INTERPRETATION: No pharmacokinetic interactions among the bnAbs and no loss of complementary neutralisation were observed in the dual and triple combinations. This study lays the foundation for designing future combination bnAb HIV prevention efficacy trials. FUNDING: US National Institute of Allergy and Infectious Diseases, US National Institute on Drug Abuse, US National Institute of Mental Health, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development.


Subject(s)
HIV Infections , HIV-1 , Adult , Female , Humans , Middle Aged , Young Adult , Antibodies, Monoclonal , Antibodies, Neutralizing , Broadly Neutralizing Antibodies/therapeutic use , HIV Antibodies , HIV Infections/drug therapy , HIV Infections/prevention & control , Polysaccharides/therapeutic use , Male
9.
Vaccine ; 41(42): 6309-6317, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37679276

ABSTRACT

BACKGROUND: An approach to a preventive HIV vaccine is induction of effective broadly neutralizing antibodies (bnAbs) and effector binding antibodies (bAbs). Preclinical studies suggest that trimeric envelope (Env) proteins may elicit nAbs, which led to the development of the recombinant gp145 subtype C Env protein (gp145 C.6980) immunogen. HVTN 122 was a Phase 1 trial that evaluated the safety, tolerability, and immunogenicity of gp145 C.6980 in adults. METHODS: Healthy, HIV-1 seronegative adults received three intramuscular injections of gp145 C.6980 with aluminum hydroxide (alum) at months 0, 2, and 6 at either 300 mcg (high dose, n = 25) or 100 mcg (low dose, n = 15), or placebo/saline (placebo, n = 5). Participants were followed for 12 months. RESULTS: Forty-five participants were enrolled. High and low doses of the study protein were well-tolerated, with mild or moderate reactogenicity commonly reported. Only one adverse event (mild injection site pruritis) in one participant (low dose) was considered product-related; there were no dose-limiting toxicities. High and low dose recipients demonstrated robust bAb responses to vaccine-matched consensus gp140 Env and subtype-matched gp120 Env proteins two weeks post-last vaccination (response rates >90 %), while no responses were detected to a heterologous subtype-matched V1V2 antigen. No significant differences were seen between high and low dose groups. Participants in both experimental arms demonstrated nAb response rates of 76.5 % to a tier 1 virus (MW9635.26), but no responses to tier 2 isolates. Env-specific CD4 + T-cell responses were elicited in 36.4 % of vaccine recipients, without significant differences between groups; no participants demonstrated CD8 + T-cell responses. CONCLUSIONS: Three doses of novel subtype C gp145 Env protein with alum were safe and well-tolerated. Participants demonstrated bAb, Env-specific CD4 + T-cell, and tier 1 nAb responses, but the regimen failed to induce tier 2 or heterologous nAb responses. CLINICAL TRIALS REGISTRATION: NCT03382418.

10.
PLOS Glob Public Health ; 3(6): e0002037, 2023.
Article in English | MEDLINE | ID: mdl-37289667

ABSTRACT

Candidate HIV vaccines are designed to induce antibodies to various components of the HIV virus. An unintended result of these antibodies is that they may also be detected by commercial HIV diagnostic kits designed to detect an immune response to HIV acquisition. This phenomenon is known as Vaccine-Induced Seropositivity/Reactivity (VISP/R). In order to identify the vaccine characteristics associated with VISP/R, we collated the VISP/R results from 8,155 participants from 75 phase 1/2 studies and estimated the odds of VISP/R by multivariable logistic regression and 10-year estimated probability of persistence in relation to vaccine platform, HIV gag and envelope (env) gene inserts, and protein boost. Recipients of viral vectors, protein boosts, and combinations of DNA and viral-vectored vaccines had higher odds of VISP/R compared to those who received DNA-only vaccines (odds ratio, OR = 10.7, 9.1, 6.8, respectively, p<0.001). Recipients of gp140+ env gene insert (OR = 7.079, p<0.001) or gp120 env (OR = 1.508, p<0.001) had higher odds of VISP/R compared to those participants who received no env. Recipients of gp140 protein had higher odds of VISP/R than those that did not receive protein (OR = 25.155, p<0.001), and recipients of gp120 protein, had lower odds of VISP/R than those that did not receive protein (OR = 0.192, p<0.001). VISP/R persisted at 10 years in more recipients of env gene insert or protein compared to those who did not (64% vs 2%). The inclusion of gag gene in a vaccine regimen had modest effects on these odds and was confounded by other covariates. Participants receiving gp140+ gene insert or protein were most often reactive across all serologic HIV tests. Conclusions from this association analysis will provide insight into the possible impact of vaccine design on the HIV diagnostic landscape and vaccinated populations.

11.
EBioMedicine ; 93: 104590, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37300931

ABSTRACT

BACKGROUND: The phase 2b proof-of-concept Antibody Mediated Prevention (AMP) trials showed that VRC01, an anti-HIV-1 broadly neutralising antibody (bnAb), prevented acquisition of HIV-1 sensitive to VRC01. To inform future study design and dosing regimen selection of candidate bnAbs, we investigated the association of VRC01 serum concentration with HIV-1 acquisition using AMP trial data. METHODS: The case-control sample included 107 VRC01 recipients who acquired HIV-1 and 82 VRC01 recipients who remained without HIV-1 during the study. We measured VRC01 serum concentrations with a qualified pharmacokinetic (PK) Binding Antibody Multiplex Assay. We employed nonlinear mixed effects PK modelling to estimate daily-grid VRC01 concentrations. Cox regression models were used to assess the association of VRC01 concentration at exposure and baseline body weight, with the hazard of HIV-1 acquisition and prevention efficacy as a function of VRC01 concentration. We also compared fixed dosing vs. body weight-based dosing via simulations. FINDINGS: Estimated VRC01 concentrations in VRC01 recipients without HIV-1 were higher than those in VRC01 recipients who acquired HIV-1. Body weight was inversely associated with HIV-1 acquisition among both placebo and VRC01 recipients but did not modify the prevention efficacy of VRC01. VRC01 concentration was inversely correlated with HIV-1 acquisition, and positively correlated with prevention efficacy of VRC01. Simulation studies suggest that fixed dosing may be comparable to weight-based dosing in overall predicted prevention efficacy. INTERPRETATION: These findings suggest that bnAb serum concentration may be a useful marker for dosing regimen selection, and operationally efficient fixed dosing regimens could be considered for future trials of HIV-1 bnAbs. FUNDING: Was provided by the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID) (UM1 AI068614, to the HIV Vaccine Trials Network [HVTN]; UM1 AI068635, to the HVTN Statistical Data and Management Center [SDMC], Fred Hutchinson Cancer Center [FHCC]; 2R37 054165 to the FHCC; UM1 AI068618, to HVTN Laboratory Center, FHCC; UM1 AI068619, to the HPTN Leadership and Operations Center; UM1 AI068613, to the HIV Prevention Trials Network [HPTN] Laboratory Center; UM1 AI068617, to the HPTN SDMC; and P30 AI027757, to the Center for AIDS Research, Duke University (AI P30 AI064518) and University of Washington (P30 AI027757) Centers for AIDS Research; R37AI054165 from NIAID to the FHCC; and OPP1032144 CA-VIMC Bill & Melinda Gates Foundation.


Subject(s)
AIDS Vaccines , Acquired Immunodeficiency Syndrome , HIV Infections , HIV Seropositivity , HIV-1 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , Acquired Immunodeficiency Syndrome/drug therapy , HIV Seropositivity/drug therapy , HIV Antibodies
12.
Front Immunol ; 13: 983313, 2022.
Article in English | MEDLINE | ID: mdl-36311720

ABSTRACT

Many participants in HIV-1 vaccine trials, who have not previously been exposed to or vaccinated against HIV-1, display serum immunoglobulin antibodies that bind the gp41 region of HIV-1 envelope prior to vaccination. Previous studies have hypothesized that these pre-existing antibodies may be cross-reactive and may skew future vaccine responses. In 12 large studies conducted by the HIV Vaccine Trial Network (HVTN) (n=1470 individuals), we find wide variation among participants in the pre-vaccine levels of gp41-reactive antibodies as measured by the binding antibody multiplex assay (BAMA). In the absence of exposure to the gp41 immunogen, anti-gp41 IgG levels were temporally stable over 26-52 weeks in repeated measures of placebo recipients. The analysis revealed that the geometric mean of pre-vaccine anti-gp41 IgG response was greater among participants in South Africa compared with participants in the United States. With gene-level metagenomic sequencing of pre-vaccination fecal samples collected from participants in one trial (HVTN 106), we detected positive associations between pre-vaccine anti-gp41 IgG and abundance of genes from multiple taxa in the Eubacteriales order. The genes most strongly associated with higher baseline anti-gp41 IgG mapped to a clade containing Blautia wexlerae and closely related strains. In trials with vaccine products containing the full or partial portion of gp41 immunogen alongside a gp120 immunogen, we did not find evidence that individuals with higher baseline anti-gp41 IgG had different levels of anti-gp120 IgG after vaccination compared to individuals with lower pre-vaccine anti-gp41 levels (pooled estimate of standardized mean difference -0.01 with a 95% CI [-0.37; 0.34]).


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV Antibodies , HIV Infections/prevention & control , Immunoglobulin G
13.
J Acquir Immune Defic Syndr ; 91(2): 182-188, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36094485

ABSTRACT

BACKGROUND: Broadly neutralizing monoclonal antibodies (bNAbs) suppress HIV-1 RNA and may deplete residual viral reservoirs. We evaluated the safety and pharmacokinetics (PK) of dual intravenous VRC01LS and 10-1074 in very early-treated children with HIV-1 on suppressive antiretroviral treatment (ART). SETTING: Botswana. METHODS: Children with HIV-1 (median age 3.1 years) on ART from <7 days old were enrolled. In phase A, 6 children received 10-1074 (30 mg/kg at day 0, 28, and 56) and 6 children received VRC01LS (30 mg/kg at day 0, 10 mg/kg at days 28 and 56) by intravenous infusion. In phase B, 6 children received the 2 bNAbs combined (with higher VRC01LS maintenance dose, 15 mg/kg) every 4 weeks for 32 weeks with PK evaluations over 8 weeks. Population PK models were developed to predict steady-state concentrations. RESULTS: BNAb infusions were well tolerated. There were no infusion reactions nor any bNAb-related grade 3 or 4 events. The median (range) first dose Cmax and trough (day 28) combined from both phases were 1405 (876-1999) µg/mL and 133 (84-319) µg/mL for 10-1074 and 776 (559-846) µg/mL and 230 (158-294) µg/mL for VRC01LS. No large differences in bNAb clearances were observed when given in combination. The estimated VRC01LS half-life was shorter than in adults. Predicted steady-state troughs [median (90% prediction interval)] were 261 (95-565) and 266 (191-366) µg/mL for 10-1074 and VRC01LS, respectively, when given in combination. CONCLUSIONS: 10-1074 and VRC01LS were safe and well-tolerated among children receiving ART. Troughs exceeded minimal targets with every 4-week administration of 10-1074 at 30 mg/kg and VRC01LS at 15 mg/kg.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Adult , Anti-Retroviral Agents/therapeutic use , Broadly Neutralizing Antibodies , Child , Child, Preschool , HIV Antibodies , HIV Infections/drug therapy , HIV Seropositivity/drug therapy , HIV-1/genetics , Humans
14.
EBioMedicine ; 84: 104271, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36179551

ABSTRACT

BACKGROUND: The identification of baseline host determinants that associate with robust HIV-1 vaccine-induced immune responses could aid HIV-1 vaccine development. We aimed to assess both the collective and relative performance of baseline characteristics in classifying individual participants in nine different Phase 1-2 HIV-1 vaccine clinical trials (26 vaccine regimens, conducted in Africa and in the Americas) as High HIV-1 vaccine responders. METHODS: This was a meta-analysis of individual participant data, with studies chosen based on participant-level (vs. study-level summary) data availability within the HIV-1 Vaccine Trials Network. We assessed the performance of 25 baseline characteristics (demographics, safety haematological measurements, vital signs, assay background measurements) and estimated the relative importance of each characteristic in classifying 831 participants as High (defined as within the top 25th percentile among positive responders or above the assay upper limit of quantification) versus Non-High responders. Immune response outcomes included HIV-1-specific serum IgG binding antibodies and Env-specific CD4+ T-cell responses assessed two weeks post-last dose, all measured at central HVTN laboratories. Three variable importance approaches based on SuperLearner ensemble machine learning were considered. FINDINGS: Overall, 30.1%, 50.5%, 36.2%, and 13.9% of participants were categorized as High responders for gp120 IgG, gp140 IgG, gp41 IgG, and Env-specific CD4+ T-cell vaccine-induced responses, respectively. When including all baseline characteristics, moderate performance was achieved for the classification of High responder status for the binding antibody responses, with cross-validated areas under the ROC curve (CV-AUC) of 0.72 (95% CI: 0.68, 0.76) for gp120 IgG, 0.73 (0.69, 0.76) for gp140 IgG, and 0.67 (95% CI: 0.63, 0.72) for gp41 IgG. In contrast, the collection of all baseline characteristics yielded little improvement over chance for predicting High Env-specific CD4+ T-cell responses [CV-AUC: 0.53 (0.48, 0.58)]. While estimated variable importance patterns differed across the three approaches, female sex assigned at birth, lower height, and higher total white blood cell count emerged as significant predictors of High responder status across multiple immune response outcomes using Approach 1. Of these three baseline variables, total white blood cell count ranked highly across all three approaches for predicting vaccine-induced gp41 and gp140 High responder status. INTERPRETATION: The identified features should be studied further in pursuit of intervention strategies to improve vaccine responses and may be adjusted for in analyses of immune response data to enhance statistical power. FUNDING: National Institute of Allergy and Infectious Diseases (UM1AI068635 to YH, UM1AI068614 to GDT, UM1AI068618 to MJM, and UM1 AI069511 to MCK), the Duke CFAR P30 AI064518 to GDT, and National Institute of Dental and Craniofacial Research (R01DE027245 to JJK). This work was also supported by the Bill and Melinda Gates Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding sources.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Antibody Formation , Female , HIV Antibodies , HIV Infections/prevention & control , Humans , Immunoglobulin G , Infant, Newborn
15.
JCI Insight ; 7(21)2022 11 08.
Article in English | MEDLINE | ID: mdl-36136590

ABSTRACT

People living with HIV-1 (PLWH) exhibit more rapid antibody decline following routine immunization and elevated baseline chronic inflammation than people without HIV-1 (PWOH), indicating potential for diminished humoral immunity during SARS-CoV-2 infection. Conflicting reports have emerged on the ability of PLWH to maintain humoral protection against SARS-CoV-2 coinfection during convalescence. It is unknown whether peak COVID-19 severity, along with HIV-1 infection status, associates with the quality and quantity of humoral immunity following recovery. Using a cross-sectional observational cohort from the United States and Peru, adults were enrolled 1-10 weeks after SARS-CoV-2 infection diagnosis or symptom resolution. Serum antibodies were analyzed for SARS-CoV-2-specific response rates, binding magnitudes, ACE2 receptor blocking, and antibody-dependent cellular phagocytosis. Overall, (a) PLWH exhibited a trend toward decreased magnitude of SARS-CoV-2-specific antibodies, despite modestly increased overall response rates when compared with PWOH; (b) PLWH recovered from symptomatic outpatient COVID-19 had comparatively diminished immune responses; and (c) PLWH lacked a corresponding increase in SARS-CoV-2 antibodies with increased COVID-19 severity when asymptomatic versus symptomatic outpatient disease was compared.


Subject(s)
COVID-19 , HIV-1 , Humans , Antibodies, Viral , Cross-Sectional Studies , Immunity, Humoral , SARS-CoV-2 , Adult
16.
Nat Med ; 28(9): 1924-1932, 2022 09.
Article in English | MEDLINE | ID: mdl-35995954

ABSTRACT

The Antibody Mediated Prevention trials showed that the broadly neutralizing antibody (bnAb) VRC01 prevented acquisition of human immunodeficiency virus-1 (HIV-1) sensitive to VRC01. Using AMP trial data, here we show that the predicted serum neutralization 80% inhibitory dilution titer (PT80) biomarker-which quantifies the neutralization potency of antibodies in an individual's serum against an HIV-1 isolate-can be used to predict HIV-1 prevention efficacy. Similar to the results of nonhuman primate studies, an average PT80 of 200 (meaning a bnAb concentration 200-fold higher than that required to reduce infection by 80% in vitro) against a population of probable exposing viruses was estimated to be required for 90% prevention efficacy against acquisition of these viruses. Based on this result, we suggest that the goal of sustained PT80 <200 against 90% of circulating viruses can be achieved by promising bnAb regimens engineered for long half-lives. We propose the PT80 biomarker as a surrogate endpoint for evaluatinon of bnAb regimens, and as a tool for benchmarking candidate bnAb-inducing vaccines.


Subject(s)
HIV Infections , HIV-1 , Animals , Humans , Antibodies, Neutralizing , Biomarkers , Broadly Neutralizing Antibodies , HIV Antibodies
17.
J Infect Dis ; 226(2): 246-257, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35758878

ABSTRACT

BACKGROUND: The ALVAC/gp120 + MF59 vaccines in the HIV Vaccine Trials Network (HVTN) 702 efficacy trial did not prevent human immunodeficiency virus-1 (HIV-1) acquisition. Vaccine-matched immunological endpoints that were correlates of HIV-1 acquisition risk in RV144 were measured in HVTN 702 and evaluated as correlates of HIV-1 acquisition. METHODS: Among 1893 HVTN 702 female vaccinees, 60 HIV-1-seropositive cases and 60 matched seronegative noncases were sampled. HIV-specific CD4+ T-cell and binding antibody responses were measured 2 weeks after fourth and fifth immunizations. Cox proportional hazards models assessed prespecified responses as predictors of HIV-1 acquisition. RESULTS: The HVTN 702 Env-specific CD4+ T-cell response rate was significantly higher than in RV144 (63% vs 40%, P = .03) with significantly lower IgG binding antibody response rate and magnitude to 1086.C V1V2 (67% vs 100%, P < .001; Pmag < .001). Although no significant univariate associations were observed between any T-cell or binding antibody response and HIV-1 acquisition, significant interactions were observed (multiplicity-adjusted P ≤.03). Among vaccinees with high IgG A244 V1V2 binding antibody responses, vaccine-matched CD4+ T-cell endpoints associated with decreased HIV-1 acquisition (estimated hazard ratios = 0.40-0.49 per 1-SD increase in CD4+ T-cell endpoint). CONCLUSIONS: HVTN 702 and RV144 had distinct immunogenicity profiles. However, both identified significant correlations (univariate or interaction) for IgG V1V2 and polyfunctional CD4+ T cells with HIV-1 acquisition. Clinical Trials Registration . NCT02968849.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Female , HIV Antibodies , HIV Envelope Protein gp120 , HIV Infections/prevention & control , Humans , Immunoglobulin G , Male , South Africa
18.
Nat Immunol ; 22(10): 1294-1305, 2021 10.
Article in English | MEDLINE | ID: mdl-34556879

ABSTRACT

Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.


Subject(s)
Cyclic AMP Response Element-Binding Protein/immunology , HIV Infections/immunology , HIV-1/immunology , Immunogenicity, Vaccine/immunology , Viral Vaccines/immunology , AIDS Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Gene Expression/immunology , Genetic Vectors/immunology , HIV Antibodies/immunology , HIV Infections/virology , Humans , Immunization/methods , Primates/immunology , Primates/virology , Vaccination/methods
19.
Front Immunol ; 12: 709994, 2021.
Article in English | MEDLINE | ID: mdl-34504492

ABSTRACT

The outcome of the recent Antibody Mediated Prevention (AMP) trials that tested infusion of the broadly neutralizing antibody (bnAb) VRC01 provides proof of concept for blocking infection from sensitive HIV-1 strains. These results also open up the possibility that triple combinations of bnAbs such as PGT121, PGDM1400, as well as long-lasting LS variants such as VRC07-523 LS, have immunoprophylactic potential. PGT121 and PGDM1400 target the HIV-1 V3 and V2 glycan regions of the gp120 envelope protein, respectively, while VRC07-523LS targets the HIV-1 CD4 binding site. These bnAbs demonstrate neutralization potency and complementary breadth of HIV-1 strain coverage. An important clinical trial outcome is the accurate measurement of in vivo concentrations of passively infused bnAbs to determine effective doses for therapy and/or prevention. Standardization and validation of this testing method is a key element for clinical studies as is the ability to simultaneously detect multiple bnAbs in a specific manner. Here we report the development of a sensitive, specific, accurate, and precise multiplexed microsphere-based assay that simultaneously quantifies the respective physiological concentrations of passively infused bnAbs in human serum to ultimately define the threshold needed for protection from HIV-1 infection.


Subject(s)
Broadly Neutralizing Antibodies/blood , HIV Antibodies/blood , HIV-1/immunology , Humans , Limit of Detection , Microspheres , Reproducibility of Results
20.
NPJ Vaccines ; 6(1): 110, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34462438

ABSTRACT

RTS,S/AS01 is an advanced pre-erythrocytic malaria vaccine candidate with demonstrated vaccine efficacy up to 86.7% in controlled human malaria infection (CHMI) studies; however, reproducible immune correlates of protection (CoP) are elusive. To identify candidates of humoral correlates of vaccine mediated protection, we measured antibody magnitude, subclass, and avidity for Plasmodium falciparum (Pf) circumsporozoite protein (CSP) by multiplex assays in two CHMI studies with varying RTS,S/AS01B vaccine dose and timing regimens. Central repeat (NANP6) IgG1 magnitude correlated best with protection status in univariate analyses and was the most predictive for protection in a multivariate model. NANP6 IgG3 magnitude, CSP IgG1 magnitude, and total serum antibody dissociation phase area-under-the-curve for NANP6, CSP, NPNA3, and N-interface binding were also associated with protection status in the regimen adjusted univariate analysis. Identification of multiple immune response features that associate with protection status, such as antibody subclasses, fine specificity and avidity reported here may accelerate development of highly efficacious vaccines against P. falciparum.

SELECTION OF CITATIONS
SEARCH DETAIL
...