Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell ; 186(26): 5690-5704.e20, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38101407

ABSTRACT

The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions. By integrating genomic, mobility, and epidemiological data, we find abundant transmission occurring between both adjacent and distant locations, supported by dynamic mobility patterns. We find that changing connectivity significantly influences local COVID-19 incidence. Our findings demonstrate a complex meaning of "local" when investigating connected epidemics and emphasize the importance of collaborative interventions for pandemic prevention and mitigation.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Genomics , Pandemics/prevention & control , Public Health , SARS-CoV-2/genetics , Infection Control , Geography
2.
Nature ; 609(7925): 101-108, 2022 09.
Article in English | MEDLINE | ID: mdl-35798029

ABSTRACT

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Wastewater , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Wastewater/virology
3.
mSystems ; 7(4): e0010322, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35703437

ABSTRACT

Surface sampling for SARS-CoV-2 RNA detection has shown considerable promise to detect exposure of built environments to infected individuals shedding virus who would not otherwise be detected. Here, we compare two popular sampling media (VTM and SDS) and two popular workflows (Thermo and PerkinElmer) for implementation of a surface sampling program suitable for environmental monitoring in public schools. We find that the SDS/Thermo pipeline shows superior sensitivity and specificity, but that the VTM/PerkinElmer pipeline is still sufficient to support surface surveillance in any indoor setting with stable cohorts of occupants (e.g., schools, prisons, group homes, etc.) and may be used to leverage existing investments in infrastructure. IMPORTANCE The ongoing COVID-19 pandemic has claimed the lives of over 5 million people worldwide. Due to high density occupancy of indoor spaces for prolonged periods of time, schools are often of concern for transmission, leading to widespread school closings to combat pandemic spread when cases rise. Since pediatric clinical testing is expensive and difficult from a consent perspective, we have deployed surface sampling in SASEA (Safer at School Early Alert), which allows for detection of SARS-CoV-2 from surfaces within a classroom. In this previous work, we developed a high-throughput method which requires robotic automation and specific reagents that are often not available for public health laboratories such as the San Diego County Public Health Laboratory (SDPHL). Therefore, we benchmarked our method (Thermo pipeline) against SDPHL's (PerkinElmer) more widely used method for the detection and prediction of SARS-CoV-2 exposure. While our method shows superior sensitivity (false-negative rate of 9% versus 27% for SDPHL), the SDPHL pipeline is sufficient to support surface surveillance in indoor settings. These findings are important since they show that existing investments in infrastructure can be leveraged to slow the spread of SARS-CoV-2 not in just the classroom but also in prisons, nursing homes, and other high-risk, indoor settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , COVID-19/diagnosis , Pandemics/prevention & control , RNA, Viral , Automation
4.
mSystems ; 7(3): e0141121, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35575492

ABSTRACT

Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces is emerging as an important tool for identifying past exposure to individuals shedding viral RNA. Our past work demonstrated that SARS-CoV-2 reverse transcription-quantitative PCR (RT-qPCR) signals from surfaces can identify when infected individuals have touched surfaces and when they have been present in hospital rooms or schools. However, the sensitivity and specificity of surface sampling as a method for detecting the presence of a SARS-CoV-2 positive individual, as well as guidance about where to sample, has not been established. To address these questions and to test whether our past observations linking SARS-CoV-2 abundance to Rothia sp. in hospitals also hold in a residential setting, we performed a detailed spatial sampling of three isolation housing units, assessing each sample for SARS-CoV-2 abundance by RT-qPCR, linking the results to 16S rRNA gene amplicon sequences (to assess the bacterial community at each location), and to the Cq value of the contemporaneous clinical test. Our results showed that the highest SARS-CoV-2 load in this setting is on touched surfaces, such as light switches and faucets, but a detectable signal was present in many untouched surfaces (e.g., floors) that may be more relevant in settings, such as schools where mask-wearing is enforced. As in past studies, the bacterial community predicts which samples are positive for SARS-CoV-2, with Rothia sp. showing a positive association. IMPORTANCE Surface sampling for detecting SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is increasingly being used to locate infected individuals. We tested which indoor surfaces had high versus low viral loads by collecting 381 samples from three residential units where infected individuals resided, and interpreted the results in terms of whether SARS-CoV-2 was likely transmitted directly (e.g., touching a light switch) or indirectly (e.g., by droplets or aerosols settling). We found the highest loads where the subject touched the surface directly, although enough virus was detected on indirectly contacted surfaces to make such locations useful for sampling (e.g., in schools, where students did not touch the light switches and also wore masks such that they had no opportunity to touch their face and then the object). We also documented links between the bacteria present in a sample and the SARS-CoV-2 virus, consistent with earlier studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Housing , RNA, Ribosomal, 16S , Respiratory Aerosols and Droplets
5.
medRxiv ; 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35411350

ABSTRACT

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

6.
medRxiv ; 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34909793

ABSTRACT

Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces is emerging as an important tool for identifying past exposure to individuals shedding viral RNA. Our past work has demonstrated that SARS-CoV-2 reverse transcription-quantitative PCR (RT-qPCR) signals from surfaces can identify when infected individuals have touched surfaces such as Halloween candy, and when they have been present in hospital rooms or schools. However, the sensitivity and specificity of surface sampling as a method for detecting the presence of a SARS-CoV-2 positive individual, as well as guidance about where to sample, has not been established. To address these questions, and to test whether our past observations linking SARS-CoV-2 abundance to Rothia spp. in hospitals also hold in a residential setting, we performed detailed spatial sampling of three isolation housing units, assessing each sample for SARS-CoV-2 abundance by RT-qPCR, linking the results to 16S rRNA gene amplicon sequences to assess the bacterial community at each location and to the Cq value of the contemporaneous clinical test. Our results show that the highest SARS-CoV-2 load in this setting is on touched surfaces such as light switches and faucets, but detectable signal is present in many non-touched surfaces that may be more relevant in settings such as schools where mask wearing is enforced. As in past studies, the bacterial community predicts which samples are positive for SARS-CoV-2, with Rothia sp. showing a positive association. IMPORTANCE: Surface sampling for detecting SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is increasingly being used to locate infected individuals. We tested which indoor surfaces had high versus low viral loads by collecting 381 samples from three residential units where infected individuals resided, and interpreted the results in terms of whether SARS-CoV-2 was likely transmitted directly (e.g. touching a light switch) or indirectly (e.g. by droplets or aerosols settling). We found highest loads where the subject touched the surface directly, although enough virus was detected on indirectly contacted surfaces to make such locations useful for sampling (e.g. in schools, where students do not touch the light switches and also wear masks so they have no opportunity to touch their face and then the object). We also documented links between the bacteria present in a sample and the SARS-CoV-2 virus, consistent with earlier studies.

7.
mSystems ; 6(6): e0113621, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34726486

ABSTRACT

Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with coronavirus disease 2019 (COVID-19) and inform appropriate infection mitigation responses. Research groups have reported detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2-positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative PCR (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over 7 days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle [Cq]) can be correlated with surface viral load using only one linear regression model per material category. The same experiment was performed with untreated viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods. IMPORTANCE Environmental monitoring is an important tool for public health surveillance, particularly in settings with low rates of diagnostic testing. Time between sampling public environments, such as hospitals or schools, and notifying stakeholders of the results should be minimal, allowing decisions to be made toward containing outbreaks of coronavirus disease 2019 (COVID-19). The Safer At School Early Alert program (SASEA) (https://saseasystem.org/), a large-scale environmental monitoring effort in elementary school and child care settings, has processed >13,000 surface samples for SARS-CoV-2, detecting viral signals from 574 samples. However, consecutive detection events necessitated the present study to establish appropriate response practices around persistent viral signals on classroom surfaces. Other research groups and clinical labs developing environmental monitoring methods may need to establish their own correlation between RT-qPCR results and viral load, but this work provides evidence justifying simplified experimental designs, like reduced testing materials and the use of heat-inactivated viral particles.

8.
bioRxiv ; 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34312621

ABSTRACT

Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with COVID-19 and inform appropriate infection mitigation responses. Research groups have reported detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2 positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over seven days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle (Cq)) can be correlated to surface viral load using only one linear regression model per material category. The same experiment was performed with infectious viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods.

9.
Cell ; 184(10): 2587-2594.e7, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33861950

ABSTRACT

The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.


Subject(s)
COVID-19 , Models, Biological , SARS-CoV-2 , COVID-19/genetics , COVID-19/mortality , COVID-19/transmission , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , United States/epidemiology
10.
medRxiv ; 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33564780

ABSTRACT

As of January of 2021, the highly transmissible B.1.1.7 variant of SARS-CoV-2, which was first identified in the United Kingdom (U.K.), has gained a strong foothold across the world. Because of the sudden and rapid rise of B.1.1.7, we investigated the prevalence and growth dynamics of this variant in the United States (U.S.), tracking it back to its early emergence and onward local transmission. We found that the RT-qPCR testing anomaly of S gene target failure (SGTF), first observed in the U.K., was a reliable proxy for B.1.1.7 detection. We sequenced 212 B.1.1.7 SARS-CoV-2 genomes collected from testing facilities in the U.S. from December 2020 to January 2021. We found that while the fraction of B.1.1.7 among SGTF samples varied by state, detection of the variant increased at a logistic rate similar to those observed elsewhere, with a doubling rate of a little over a week and an increased transmission rate of 35-45%. By performing time-aware Bayesian phylodynamic analyses, we revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with onward community transmission enabling the variant to spread to at least 30 states as of January 2021. Our study shows that the U.S. is on a similar trajectory as other countries where B.1.1.7 rapidly became the dominant SARS-CoV-2 variant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.

11.
Nutrients ; 11(8)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443226

ABSTRACT

Metabolic acidosis can lead to inflammation, tissue damage, and cancer metastasis. Dietary acid load contributes to metabolic acidosis if endogenous acid-base balance is not properly regulated. Breast cancer survivors have reduced capacities to adjust their acid-base balance; yet, the associations between dietary acid load and inflammation and hyperglycemia have not been examined among them. We analyzed data collected from 3042 breast cancer survivors enrolled in the Women's Healthy Eating and Living (WHEL) Study who had provided detailed dietary intakes and measurements of plasma C-reactive protein (CRP) and hemoglobin A1c (HbA1c). Using a cross-sectional design, we found positive associations between dietary acid load and plasma CRP and HbA1c. In the multivariable-adjusted models, compared to women with the lowest quartile, the intakes of dietary acid load among women with the highest quartile showed 30-33% increases of CRP and 6-9% increases of HbA1c. Our study is the first to demonstrate positive associations between dietary acid load and CRP and HbA1c in breast cancer survivors. Our study identifies a novel dietary factor that may lead to inflammation and hyperglycemia, both of which are strong risk factors for breast cancer recurrence and comorbidities.


Subject(s)
Acidosis/etiology , Blood Glucose/metabolism , Breast Neoplasms/therapy , C-Reactive Protein/analysis , Cancer Survivors , Diet/adverse effects , Hyperglycemia/etiology , Inflammation Mediators/blood , Inflammation/etiology , Acidosis/blood , Acidosis/diagnosis , Adolescent , Adult , Aged , Biomarkers/blood , Cross-Sectional Studies , Female , Glycated Hemoglobin/metabolism , Humans , Hydrogen-Ion Concentration , Hyperglycemia/blood , Hyperglycemia/diagnosis , Inflammation/blood , Inflammation/diagnosis , Middle Aged , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...