Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Calcium ; 13(6-7): 413-25, 1992.
Article in English | MEDLINE | ID: mdl-1380404

ABSTRACT

Paramecium generates a Ca2+ action potential and can be considered a one-cell animal. Rises in internal [Ca2+] open membrane channels that specifically pass K+, or Na+. Mutational and patch-clamp studies showed that these channels, like enzymes, are activated by Ca(2+)-calmodulin. Viable CaM mutants of Paramecium have altered transmembrane currents and easily recognizable eccentricities in their swimming behavior, i.e. in their responses to ionic, chemical, heat, or touch stimuli. Their CaMs have amino-acid substitutions in either C- or N-terminal lobes but not the central helix. Surprisingly, these mutations naturally fall into two classes: C-lobe mutants (S101F, I136T, M145V) have little or no Ca(2+)-dependent K+ currents and thus over-react to stimuli. N-lobe mutants (E54K, G40E+D50N, V35I+D50N) have little or no Ca(2+)-dependent Na+ current and thus under-react to certain stimuli. Each mutation also has pleiotropic effects on other ion currents. These results suggest a bipartite separation of CaM functions, a separation consistent with the recent studies of Ca(2+)-ATPase by Kosk-Kosicka et al. [41, 55]. It appears that a major function of Ca(2+)-calmodulin in vivo is to orchestrate enzymes and channels, at or near the plasma membrane. The orchestrated actions of these effectors are not for vegetative growth at steady state but for transient responses to stimuli epitomized by those of electrically excitable cells.


Subject(s)
Calcium/physiology , Calmodulin/physiology , Paramecium tetraurelia/metabolism , Amino Acid Sequence , Animals , Cell Membrane/physiology , Ion Channels/physiology , Molecular Sequence Data , Mutation
2.
J Biomol NMR ; 1(3): 217-36, 1991 Sep.
Article in English | MEDLINE | ID: mdl-1841696

ABSTRACT

A protein NMR database has been designed and is being implemented. The database is intended to contain solution NMR results from proteins and peptides (larger than 12 residues). A relational database format has been chosen that indexes data by: primary journal citation, molecular species, sequence-related and atom-specific assignments, and experimental conditions. At present, all data are entered from the primary refereed literature. Examples are given of sample queries to the database. Possible distribution formats are discussed.


Subject(s)
Databases, Bibliographic , Magnetic Resonance Spectroscopy/methods , Peptides/chemistry , Protein Conformation , Proteins/chemistry , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...