Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Environ Res Public Health ; 9(7): 2412-43, 2012 07.
Article in English | MEDLINE | ID: mdl-22851952

ABSTRACT

Fish collected after a mass mortality at an artificial lake in south-east Queensland, Australia, were examined for the presence of nodularin as the lake had earlier been affected by a Nodularia bloom. Methanol extracts of muscle, liver, peritoneal and stomach contents were analysed by HPLC and tandem mass spectrometry; histological examination was conducted on livers from captured mullet. Livers of sea mullet (Mugil cephalus) involved in the fish kill contained high concentrations of nodularin (median 43.6 mg/kg, range 40.8-47.8 mg/kg dry weight; n = 3) and the toxin was also present in muscle tissue (median 44.0 µg/kg, range 32.3-56.8 µg/kg dry weight). Livers of fish occupying higher trophic levels accumulated much lower concentrations. Mullet captured from the lake 10 months later were also found to have high hepatic nodularin levels. DNA sequencing of mullet specimens revealed two species inhabiting the study lake: M. cephalus and an unidentified mugilid. The two mullet species appear to differ in their exposure and/or uptake of nodularin, with M. cephalus demonstrating higher tissue concentrations. The feeding ecology of mullet would appear to explain the unusual capacity of these fish to concentrate nodularin in their livers; these findings may have public health implications for mullet fisheries and aquaculture production where toxic cyanobacteria blooms affect source waters. This report incorporates a systematic review of the literature on nodularin measured in edible fish, shellfish and crustaceans.


Subject(s)
Eutrophication , Liver/chemistry , Peptides, Cyclic/pharmacokinetics , Smegmamorpha , Animals , Crustacea/chemistry , Gastrointestinal Contents/chemistry , Liver/pathology , Muscles/chemistry , Nodularia/isolation & purification , Queensland , Shellfish/analysis
2.
Environ Health ; 8: 52, 2009 Nov 19.
Article in English | MEDLINE | ID: mdl-19925679

ABSTRACT

Cyanobacteria can produce groups of structurally and functionally unrelated but highly potent toxins. Cyanotoxins are used in multiple research endeavours, either for direct investigation of their toxicologic properties, or as functional analogues for various biochemical and physiological processes. This paper presents occupational safety guidelines and recommendations for personnel working in field, laboratory or industrial settings to produce and use purified cyanotoxins and toxic cyanobacteria, from bulk harvesting of bloom material, mass culture of laboratory isolates, through routine extraction, isolation and purification. Oral, inhalational, dermal and parenteral routes are all potential occupational exposure pathways during the various stages of cyanotoxin production and application. Investigation of toxicologic or pharmacologic properties using in vivo models may present specific risks if radiolabelled cyanotoxins are employed, and the potential for occupational exposure via the dermal route is heightened with the use of organic solvents as vehicles. Inter- and intra-national transport of living cyanobacteria for research purposes risks establishing feral microalgal populations, so disinfection of culture equipment and destruction of cells by autoclaving, incineration and/or chlorination is recommended in order to prevent viable cyanobacteria from escaping research or production facilities.


Subject(s)
Bacterial Toxins/isolation & purification , Bacterial Toxins/toxicity , Cyanobacteria/isolation & purification , Environmental Monitoring/standards , Marine Toxins/isolation & purification , Marine Toxins/toxicity , Microcystins/isolation & purification , Microcystins/toxicity , Occupational Exposure/standards , Safety Management/standards , Cyanobacteria Toxins , Freeze Drying/standards , Occupational Exposure/prevention & control , Risk Assessment/standards , Toxicity Tests
3.
Adv Exp Med Biol ; 619: 613-37, 2008.
Article in English | MEDLINE | ID: mdl-18461786

ABSTRACT

Poisoning of livestock by toxic cyanobacteria was first reported in the 19th century, and throughout the 20th century cyanobacteria-related poisonings of livestock and wildlife in all continents have been described. Some mass mortality events involving unrelated fauna in prehistoric times have also been attributed to cyanotoxin poisoning; if correct, this serves as a reminder that toxic cyanobacteria blooms predate anthropogenic manipulation of the environment, though there is probably general agreement that human intervention has led to increases in the frequency and extent of cyanobacteria blooms. Many of the early reports of cyanobacteria poisoning were anecdotal and circumstantial, albeit with good descriptions of the appearance and behaviour of cyanobacteria blooms that preceded or coincided with illness and death in exposed animals. Early necropsy findings of hepatotoxicity were subsequently confirmed by experimental investigations. More recent reports supplement clinical and post-mortem findings with investigative chemistry techniques to identify cyanotoxins in stomach contents and tissue fluids.


Subject(s)
Bacterial Toxins/poisoning , Cyanobacteria/pathogenicity , Eutrophication , Marine Toxins/poisoning , Microcystins/poisoning , Alkaloids , Animals , Animals, Domestic/microbiology , Animals, Wild/microbiology , Bacterial Toxins/history , Birds/microbiology , Cyanobacteria Toxins , History, 20th Century , History, 21st Century , History, Ancient , Marine Toxins/history , Microcystins/history , Peptides, Cyclic/history , Peptides, Cyclic/poisoning , Saxitoxin/history , Saxitoxin/poisoning , Tropanes/history , Tropanes/poisoning , Uracil/analogs & derivatives , Uracil/history , Uracil/poisoning
4.
Mol Cancer Ther ; 5(9): 2300-9, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16985064

ABSTRACT

Phytochemicals have provided an abundant and effective source of therapeutics for the treatment of cancer. Here we describe the characterization of a novel plant toxin, persin, with in vivo activity in the mammary gland and a p53-, estrogen receptor-, and Bcl-2-independent mode of action. Persin was previously identified from avocado leaves as the toxic principle responsible for mammary gland-specific necrosis and apoptosis in lactating livestock. Here we used a lactating mouse model to confirm that persin has a similar cytotoxicity for the lactating mammary epithelium. Further in vitro studies in a panel of human breast cancer cell lines show that persin selectively induces a G2-M cell cycle arrest and caspase-dependent apoptosis in sensitive cells. The latter is dependent on expression of the BH3-only protein Bim. Bim is a sensor of cytoskeletal integrity, and there is evidence that persin acts as a microtubule-stabilizing agent. Due to the unique structure of the compound, persin could represent a novel class of microtubule-targeting agent with potential specificity for breast cancers.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Fatty Alcohols/pharmacology , Membrane Proteins/physiology , Persea/chemistry , Proto-Oncogene Proteins/physiology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/physiology , Apoptosis Regulatory Proteins/biosynthesis , Bcl-2-Like Protein 11 , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Division/drug effects , Cell Growth Processes/drug effects , Cell Line, Tumor , Fatty Alcohols/isolation & purification , G2 Phase/drug effects , Humans , Lactation , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Membrane Proteins/biosynthesis , Mice , Microtubules/drug effects , Microtubules/metabolism , Plant Leaves/chemistry , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/genetics , Transfection
5.
BMC Dermatol ; 6: 5, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16573840

ABSTRACT

BACKGROUND: Freshwater cyanobacteria are common inhabitants of recreational waterbodies throughout the world; some cyanobacteria can dominate the phytoplankton and form blooms, many of which are toxic. Numerous reports in the literature describe pruritic skin rashes after recreational or occupational exposure to cyanobacteria, but there has been little research conducted on the cutaneous effects of cyanobacteria. Using the mouse ear swelling test (MEST), we sought to determine whether three toxin-producing cyanobacteria isolates and the purified cyanotoxin cylindrospermopsin produced delayed-contact hypersensitivity reactions. METHODS: Between 8 and 10 female Balb/c mice in each experiment had test material applied to depilated abdominal skin during the induction phase and 10 or 11 control mice had vehicle only applied to abdominal skin. For challenge (day 10) and rechallenge (day 17), test material was applied to a randomly-allocated test ear; vehicle was applied to the other ear as a control. Ear thickness in anaesthetised mice was measured with a micrometer gauge at 24 and 48 hours after challenge and rechallenge. Ear swelling greater than 20% in one or more test mice is considered a positive response. Histopathology examination of ear tissues was conducted by independent examiners. RESULTS: Purified cylindrospermopsin (2 of 9 test mice vs. 0 of 5 control mice; p = 0.51) and the cylindrospermopsin-producing cyanobacterium C. raciborskii (8 of 10 test mice vs. 0 of 10 control mice; p = 0.001) were both shown to produce hypersensitivity reactions. Irritant reactions were seen on abdominal skin at induction. Two other toxic cyanobacteria (Microcystis aeruginosa and Anabaena circinalis) did not generate any responses using this model. Histopathology examinations to determine positive and negative reactions in ear tissues showed excellent agreement beyond chance between both examiners (kappa = 0.83). CONCLUSION: The irritant properties and cutaneous sensitising potential of cylindrospermopsin indicate that these toxicological endpoints should be considered by public health advisors and reservoir managers when setting guidelines for recreational exposure to cyanobacteria.


Subject(s)
Cylindrospermopsis/chemistry , Dermatitis, Allergic Contact/etiology , Irritants/toxicity , Marine Toxins/toxicity , Uracil/analogs & derivatives , Alkaloids , Anabaena/chemistry , Animals , Bacterial Toxins , Cell Extracts/toxicity , Cyanobacteria Toxins , Dermatitis, Allergic Contact/pathology , Female , Marine Toxins/isolation & purification , Mice , Mice, Inbred BALB C , Microcystis/chemistry , Random Allocation , Research Design , Single-Blind Method , Species Specificity , Uracil/isolation & purification , Uracil/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...