Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 121(4): 1284-1297, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240126

ABSTRACT

Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.


Subject(s)
Antibodies, Monoclonal , Proteomics , Cricetinae , Animals , Cricetulus , Proteomics/methods , CHO Cells , Antibodies, Monoclonal/chemistry , Chromatography, Gel , Staphylococcal Protein A/chemistry
2.
Biotechnol Bioeng ; 121(1): 291-305, 2024 01.
Article in English | MEDLINE | ID: mdl-37877536

ABSTRACT

Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines. The results show considerable variability in HCP identities in the processing steps but extensive commonality in the identities and quantities of the most abundant HCPs in the harvests for different processes. Analysis of HCP abundance in the harvests shows a likely relationship between abundance and the reproducibility of quantification measurements and suggests that some groups of HCPs may hinder the characterization. Quantitative monitoring of HCPs persisting through purification steps coupled with the findings from the harvest analysis suggest that multiple factors, including HCP abundance and mAb-HCP interactions, can contribute to the persistence of individual HCPs and the identification of groups of common, persistent HCPs in mAb manufacturing.


Subject(s)
Antibodies, Monoclonal , Cricetinae , Animals , Humans , Antibodies, Monoclonal/chemistry , Reproducibility of Results , Cricetulus , Mass Spectrometry , CHO Cells
3.
Biotechnol Bioeng ; 120(4): 1068-1080, 2023 04.
Article in English | MEDLINE | ID: mdl-36585356

ABSTRACT

In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.


Subject(s)
Biological Products , Protein Aggregates , Cricetinae , Animals , Humans , Cricetulus , Antibodies, Monoclonal , Proteomics/methods , CHO Cells
4.
Biotechnol Prog ; 35(4): e2776, 2019 07.
Article in English | MEDLINE | ID: mdl-30629862

ABSTRACT

The downstream process development of novel antibodies (Abs) is often challenged by virus filter fouling making a better understanding of the underlying mechanisms highly desirable. The present study combines the protein characterization of different feedstreams with their virus filtration performance using a novel high throughput filtration screening system. Filtration experiments with Ab concentrations of up to 20 g/L using either low interacting or hydrophobically interacting pre-filters indicate the existence of two different fouling mechanisms, an irreversible and a reversible one. At the molecular level, size exclusion chromatography revealed that the presence of large amount of high molecular weight species-considered as irreversible aggregates-correlates with irreversible fouling that caused reduced Ab throughput. Results using dynamic light scattering show that a concentration dependent increase of the mean hydrodynamic diameter to the range of dimers (17 nm at 20 g/L) together with a negative DLS interaction parameter kD (-18 mL/g) correlate with the propensity to form reversible aggregates and to cause reversible fouling, probably by a decelerated Ab transport velocity within the virus filter. The two fouling mechanisms are further supported by buffer flush experiments. Finally, concepts for reversible and irreversible fouling mechanisms are discussed together with strategies for respective fouling mitigation. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2776, 2019.


Subject(s)
Antibodies/isolation & purification , Filtration , High-Throughput Screening Assays , Viruses/isolation & purification , Antibodies/chemistry , High-Throughput Screening Assays/instrumentation , Hydrodynamics , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...