Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36772482

ABSTRACT

The adequate characterization of pain is critical in diagnosis and therapy selection, and currently is subjectively assessed by patient communication and self-evaluation. Thus, pain recognition and assessment have been a target of study in past years due to the importance of objective measurement. The goal of this work is the analysis of the electrocardiogram (ECG) under emotional contexts and reasoning on the physiological classification of pain under neutral and fear conditions. Using data from both contexts for pain classification, a balanced accuracy of up to 97.4% was obtained. Using an emotionally independent approach and using data from one emotional context to learn pain and data from the other to evaluate the models, a balanced accuracy of up to 97.7% was reached. These similar results seem to support that the physiological response to pain was maintained despite the different emotional contexts. Attempting a participant-independent approach for pain classification and using a leave-one-out cross-validation strategy, data from the fear context were used to train pain classification models, and data from the neutral context were used to evaluate the performance, achieving a balanced accuracy of up to 94.9%. Moreover, across the different learning strategies, Random Forest outperformed the remaining models. These results show the feasibility of identifying pain through physiological characteristics of the ECG response despite the presence of autonomic nervous system perturbations.


Subject(s)
Emotions , Pain , Humans , Emotions/physiology , Pain/diagnosis , Fear , Learning , Electrocardiography/methods
2.
Sensors (Basel) ; 23(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36772546

ABSTRACT

In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods.


Subject(s)
Biometric Identification , Biometry , Humans , Biometry/methods , Biometric Identification/methods , Electrocardiography/methods , Bibliometrics
3.
Sensors (Basel) ; 22(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501978

ABSTRACT

Pain is a complex phenomenon that arises from the interaction of multiple neuroanatomic and neurochemical systems with several cognitive and affective processes. Nowadays, the assessment of pain intensity still relies on the use of self-reports. However, recent research has shown a connection between the perception of pain and exacerbated stress response in the Autonomic Nervous System. As a result, there has been an increasing analysis of the use of autonomic reactivity with the objective to assess pain. In the present study, the methods include pre-processing, feature extraction, and feature analysis. For the purpose of understanding and characterizing physiological responses of pain, different physiological signals were, simultaneously, recorded while a pain-inducing protocol was performed. The obtained results, for the electrocardiogram (ECG), showed a statistically significant increase in the heart rate, during the painful period compared to non-painful periods. Additionally, heart rate variability features demonstrated a decrease in the Parasympathetic Nervous System influence. The features from the electromyogram (EMG) showed an increase in power and contraction force of the muscle during the pain induction task. Lastly, the electrodermal activity (EDA) showed an adjustment of the sudomotor activity, implying an increase in the Sympathetic Nervous System activity during the experience of pain.


Subject(s)
Autonomic Nervous System , Sympathetic Nervous System , Humans , Autonomic Nervous System/physiology , Heart Rate/physiology , Sympathetic Nervous System/physiology , Pain , Electrocardiography
4.
Sensors (Basel) ; 22(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35336371

ABSTRACT

Recently, several studies have demonstrated the potential of electrocardiogram (ECG) to be used as a physiological signature for biometric systems (BS). We investigated the potential of ECG as a biometric trait for the identification and authentication of individuals. We used data from a public database, CYBHi, containing two off-the-person records from 63 subjects, separated by 3 months. For the BS, two templates were generated: (1) cardiac cycles (CC) and (2) scalograms. The identification with CC was performed with LDA, kNN, DT, and SVM, whereas a convolutional neural network (CNN) and a distance-based algorithm were used for scalograms. The authentication was performed with a distance-based algorithm, with a leave-one-out cross validation, for impostors evaluation. The identification system yielded accuracies of 79.37% and 69.84% for CC with LDA and scalograms with CNN, respectively. The authentication yielded an accuracy of 90.48% and an impostor score of 13.06% for CC, and it had an accuracy of 98.42% and an impostor score of 14.34% for scalograms. The obtained results support the claim that ECG can be successfully used for personal recognition. To the best of our knowledge, our study is the first to thoroughly compare templates and methodologies to optimize the performance of an ECG-based biometric system.


Subject(s)
Biometry , Electrocardiography , Algorithms , Databases, Factual , Electrocardiography/methods , Humans , Neural Networks, Computer
5.
Sensors (Basel) ; 21(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668116

ABSTRACT

Smoke inhalation poses a serious health threat to firefighters (FFs), with potential effects including respiratory and cardiac disorders. In this work, environmental and physiological data were collected from FFs, during experimental fires performed in 2015 and 2019. Extending a previous work, which allowed us to conclude that changes in heart rate (HR) were associated with alterations in the inhalation of carbon monoxide (CO), we performed a HR analysis according to different levels of CO exposure during firefighting based on data collected from three FFs. Based on HR collected and on CO occupational exposure standards (OES), we propose a classifier to identify CO exposure levels through the HR measured values. An ensemble of 100 bagged classification trees was used and the classification of CO levels obtained an overall accuracy of 91.9%. The classification can be performed in real-time and can be embedded in a decision fire-fighting support system. This classification of FF' exposure to critical CO levels, through minimally-invasive monitored HR, opens the possibility to identify hazardous situations, preventing and avoiding possible severe problems in FF' health due to inhaled pollutants. The obtained results also show the importance of future studies on the relevance and influence of the exposure and inhalation of pollutants on the FF' health, especially in what refers to hazardous levels of toxic air pollutants.


Subject(s)
Carbon Monoxide/analysis , Firefighters , Heart Rate , Inhalation Exposure/analysis , Occupational Exposure/analysis , Fires , Humans , Smoke/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...