Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21268265

ABSTRACT

Fourier-transform infrared (FTIR) spectroscopy provides a (bio)chemical snapshot of the sample, and was recently proposed for COVID-19 saliva screening in proof-of-concept cohort studies. As a step towards translation of this technology, we conducted controlled validation experiments in multiple biological systems. SARS-CoV-2 or UV-inactivated SARS-CoV-2 were used to infect Vero E6 cells in vitro, and K18-hACE2 mice in vivo. Potentially infectious culture supernatant or mouse oral lavage samples were treated with ethanol or Trizol to 75% (v/v) for attenuated total reflectance (ATR)-FTIR spectroscopy, or RT-PCR, respectively. The control condition, UV-inactivated SARS-CoV-2 elicited strong biochemical changes in culture supernatant/oral lavage despite lack of replication determined by RT-PCR or cell culture infectious dose 50%. Crucially, we show that active SARS-CoV-2 infection induced additional FTIR signals over the UV-inactivated SARS-CoV-2 infection, which correspond to innate immune response, aggregated proteins, and RNA. For human patient cohort prediction, we achieved high sensitivity of 93.48% on leave-on-out cross validation (n=104 participants) for predicting COVID-19 positivity using a partial least squares discriminant analysis model, in agreement with recent studies. However, COVID-19 patients negative on follow-up (RT-PCR on day of saliva sampling) were poorly predicted in this model. Importantly, COVID-19 vaccination did not lead to mis-classification of COVID-19 negatives. Meta-analysis revealed SARS-CoV-2 induced increase in Amide II band in all arms of this study and recent studies, indicative of altered {beta}-sheet structures in secreted proteins. In conclusion, ATR-FTIR is a robust, simple, portable method for COVID-19 saliva screening based on detection of pathophysiological responses to SARS-CoV-2.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21262296

ABSTRACT

Whole-genome sequencing of viral isolates is critical for informing transmission patterns and ongoing evolution of pathogens, especially during a pandemic. However, when genomes have low variability in the early stages of a pandemic, the impact of technical and/or sequencing errors increases. We quantitatively assessed inter-laboratory differences in consensus genome assemblies of 72 matched SARS-CoV-2-positive specimens sequenced at different laboratories in Sydney, Australia. Raw sequence data were assembled using two different bioinformatics pipelines in parallel, and resulting consensus genomes were compared to detect laboratory-specific differences. Matched genome sequences were predominantly concordant, with a median pairwise identity of 99.997%. Identified differences were predominantly driven by ambiguous site content. Ignoring these produced differences in only 2.3% (5/216) of pairwise comparisons, each differing by a single nucleotide. Matched samples were assigned the same Pango lineage in 98.2% (212/216) of pairwise comparisons, and were mostly assigned to the same phylogenetic clade. However, epidemiological inference based only on single nucleotide variant distances may lead to significant differences in the number of defined clusters if variant allele frequency thresholds for consensus genome generation differ between laboratories. These results underscore the need for a unified, best-practices approach to bioinformatics between laboratories working on a common outbreak problem.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-236893

ABSTRACT

Viral whole-genome sequencing (WGS) provides critical insight into the transmission and evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Long-read sequencing devices from Oxford Nanopore Technologies (ONT) promise significant improvements in turnaround time, portability and cost, compared to established short-read sequencing platforms for viral WGS (e.g., Illumina). However, adoption of ONT sequencing for SARS-CoV-2 surveillance has been limited due to common concerns around sequencing accuracy. To address this, we performed viral WGS with ONT and Illumina platforms on 157 matched SARS-CoV-2-positive patient specimens and synthetic RNA controls, enabling rigorous evaluation of analytical performance. Despite the elevated error rates observed in ONT sequencing reads, highly accurate consensus-level sequence determination was achieved, with single nucleotide variants (SNVs) detected at >99% sensitivity and >99% precision above a minimum ~60-fold coverage depth, thereby ensuring suitability for SARS-CoV-2 genome analysis. ONT sequencing also identified a surprising diversity of structural variation within SARS-CoV-2 specimens that were supported by evidence from short-read sequencing on matched samples. However, ONT sequencing failed to accurately detect short indels and variants at low read-count frequencies. This systematic evaluation of analytical performance for SARS-CoV-2 WGS will facilitate widespread adoption of ONT sequencing within local, national and international COVID-19 public health initiatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...