Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 637: 122888, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36977451

ABSTRACT

Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 µm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 µm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 µL/min, and of withdrawing 1 µL of interstitial fluid using capillary action.


Subject(s)
Equipment Design , Needles , Silicon , Humans , Administration, Cutaneous , Drug Delivery Systems/instrumentation , Microinjections/instrumentation , Microinjections/methods , Reproducibility of Results , Skin , Manufacturing Industry , Equipment Design/methods
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3020-3023, 2022 07.
Article in English | MEDLINE | ID: mdl-36085614

ABSTRACT

Micro Transdermal Interface Platforms (MicroTIPs) will combine minimally invasive microneedle arrays with highly miniaturized sensors, actuators, control electronics, wireless communications and artificial intelligence. These patch-like devices will be capable of autonomous physiological monitoring and transdermal drug delivery, resulting in increased patient adherence and devolved healthcare. In this paper, we experimentally demonstrate the feasibility of controlled transdermal drug delivery using a combination of 500 µm tall silicon microneedles, a commercial micropump, pressure and flow sensors, and bespoke electronics. Using ex-vivo human skin samples and a customized application/retraction system, leak-free delivery of volumes ranging from 0.7-1.1 mL has been achieved in under one hour. Clinical Relevance - This work experimentally confirms the feasibility of combining micropumps with microneedle arrays for applications in transdermal drug delivery.


Subject(s)
Artificial Intelligence , Needles , Communication , Drug Delivery Systems , Electronics , Humans
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2573-2576, 2022 07.
Article in English | MEDLINE | ID: mdl-36085690

ABSTRACT

Microneedle-based transdermal drug delivery is considered an attractive alternative to conventional injections using hypodermic needles due to its minimally invasive and painless nature; this has the potential to improve patient adherence to medication regimens. Hollow microneedles (MNs) are sharp, sub-millimeter protrusions with a channel that serves as a fluidic interface with the skin. This technology could be coupled with micro-pumps, embedded sensors, actuators and electronics to create Micro Transdermal Interface Platforms - smart, wearable infusion systems capable of delivering precise microdoses over a prolonged period. Using 500 µm tall hollow microneedles, ex-vivo human skin and a customized application/retraction device, this work focuses on comparing two infusion control strategies, namely 'set pressure' (SP) and 'set flow' (SF) infusion. It was found that flow-controlled infusion was capable of delivering higher volumes than pressure-driven delivery, and a mean volume of 3.8 mL was delivered using a set flowrate of 50 µL/minute. This suggests that flow driven delivery is a better control strategy and confirms that MN array retraction is beneficial for transdermal MN infusion.


Subject(s)
Body Fluids , Needles , Electronics , Humans , Patient Compliance , Skin
SELECTION OF CITATIONS
SEARCH DETAIL
...