Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Chemphyschem ; 25(9): e202300521, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38314956

ABSTRACT

An inverse coarse-graining protocol is presented for generating and validating atomistic structures of large (bio-) molecules from conformations obtained via a coarse-grained sampling method. Specifically, the protocol is implemented and tested based on the (coarse-grained) PRIME20 protein model (P20/SAMC), and the resulting all-atom conformations are simulated using conventional biomolecular force fields. The phase space sampling at the coarse-grained level is performed with a stochastical approximation Monte Carlo approach. The method is applied to a series of polypeptides, specifically dimers of polyglutamine with varying chain length in aqueous solution. The majority (>70 %) of the conformations obtained from the coarse-grained peptide model can successfully be mapped back to atomistic structures that remain conformationally stable during 10 ns of molecular dynamics simulations. This work can be seen as the first step towards the overarching goal of improving our understanding of protein aggregation phenomena through simulation methods.

2.
Macromolecules ; 57(3): 1238-1247, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38370913

ABSTRACT

This study demonstrates the use of 1,5-naphthalenedisulfonic acid as a suitable building block for the efficient and economic preparation of alternating sulfonated polyphenylenes with high ion-exchange capacity (IEC) via Suzuki polycondensation. Key to large molar masses is the use of an all-meta-terphenyl comonomer instead of m-phenyl, the latter giving low molar masses and brittle materials. A protection/deprotection strategy for base-stable neopentyl sulfonates is successfully implemented to improve the solubility and molar mass of the polymers. Solution-based deprotection of polyphenylene neopentyl sulfonates at 150 °C in dimethylacetamide eliminates isopentylene quantitatively, resulting in membranes with high IEC (2.93 mequiv/g) and high proton conductivity (σ = 138 mS/cm). Water solubility of these copolymers with high IEC requires thermal cross-linking to prevent their dissolution under operating conditions. By balancing the temperature and time of the cross-linking process, water uptake can be restricted to 50 wt %, retaining an IEC of 2.33 mequiv/g and a conductivity of 85 mS/cm. Chemical stability is addressed by treatment of the membranes under Fenton's conditions and by considering barrier heights for desulfonation using density functional theory (DFT) calculations. The DFT results suggest that 1,5-disulfonated naphthalenes are at least as stable as sulfonated polyphenylenes against desulfonation.

3.
Nat Commun ; 15(1): 293, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177143

ABSTRACT

A previous controversial discussion regarding the interpretation of Rydberg spectra of gaseous dimethylpiperazine (DMP) as showing the co-existence of a localized and delocalized mixed-valent DMP+ radical cation is revisited. Here we show by high-level quantum-chemical calculations that an apparent barrier separating localized and delocalized DMP+ minima in previous multi-reference configuration-interaction (MRCI) calculations and in some other previous computations were due to unphysical curve crossings of the reference wave functions. These discontinuities on the surface are removed in state-averaged MRCI calculations and with some other, orthogonal high-level approaches, which do not provide a barrier and thus no localized minimum. We then proceed to show that in the actually observed Rydberg state of neutral DMP the 3s-type Rydberg electron binds more strongly to a localized positive charge distribution, generating a localized DMP* Rydberg-state minimum, which is absent for the DMP+ cation. This work presents a case where interactions of a Rydberg electron with the underlying cationic core alter molecular structure in a fundamental way.

4.
Molecules ; 28(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38005314

ABSTRACT

We present an extension of our previously developed all-atom force field BILFF (Bio-polymers in Ionic Liquids Force Field) to three different ionic liquids: 1-ethyl-3-methyl-1,2,3-triazolium acetate ([EMTr][OAc]), 1-ethyl-3-methyl-1,2,3-triazolium benzoate ([EMTr][OBz]), and 1-ethyl-3-methylimidazolium benzoate ([EMIm][OBz]). These ionic liquids are of practical importance as they have the ability to dissolve significant amounts of cellulose even at room temperature. Our force field is optimized to accurately reproduce the strong hydrogen bonding in the system with nearly quantum chemical accuracy. A very good agreement between the microstructure of the quantum chemical simulations over a wide temperature range and experimental density data with the results of BILFF were observed. Non-trivial effects, such as the solvation shell structure and π-π stacking of the cations, are also accurately reproduced. Our force field enables accurate simulations of larger systems, such as solvated cellulose in different (aqueous) ionic liquids, and is the first to present the optimized parameters for mixtures of these solvents and water.

5.
RSC Adv ; 13(40): 27756-27763, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37727317

ABSTRACT

Optimization of lithium-sulfur batteries highly depends on exploring and characterizing new cathode materials. Sulfur/carbon copolymers have recently attracted much attention as an alternative class of cathodes to replace crystalline sulfur. In particular, poly(sulfur-n-1,3-diisopropenylbenzene) (S/DIB) has been under considerable experimental and theoretical investigations, promising a good performance in mitigating the so-called shuttle effect. Here, combining ab initio Raman spectroscopy simulations with experimental measurements, we show that S/DIB copolymers containing short and long sulfur chains are distinguishable based on their Raman activity in 400-500 cm-1. This frequency range corresponds to S-S stretching vibrations and is only observed in the Raman spectra of those copolymers with longer sulfur chains. The results reported in this study have direct applications in identification and characterization of general sulfur/carbon copolymers with different sulfur contents.

6.
J Phys Chem Lett ; 14(32): 7249-7255, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37553110

ABSTRACT

Phosphoric acid is commonly known either as a neutral molecule or as an anion (phosphate). We theoretically confirm by ab initio molecular dynamics simulations (AIMD) that a cationic form H4PO4+ coexists with the anionic form H2PO4- in the same salt. This paradoxical situation is achieved by partial substitution of Cs+ by H4PO4+ in CsH2PO4. Thus, HnPO4 acts simultaneously as both the positive and the negative ion of the salt. We analyze the dynamical protonation pattern within the unusual hydrogen bond network that is established between the ions. Our AIMD simulations show that a conventional assignment of protonation states of the phosphate groups is not meaningful. Instead, a better description of the protonation situation is achieved by an efficiently fractional assignment of the strongly hydrogen-bonded protons to both its nearest and next-nearest oxygen neighbors.

7.
J Phys Chem Lett ; 14(20): 4775-4785, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37186569

ABSTRACT

Imidazole, being an amphoteric molecule, can act both as an acid and as a base. This property enables imidazole, as an essential building block, to effectively facilitate proton transport in high-temperature proton exchange membrane fuel cells and in proton channel transmembrane proteins, enabling those systems to exhibit high energy conversion yields and optimal biological function. We explore the amphoteric properties of imidazole by following the proton transfer exchange reaction dynamics with the bifunctional photoacid 7-hydroxyquinoline (7HQ). We show with ultrafast ultraviolet-mid-infrared pump-probe spectroscopy how for imidazole, in contrast to expectations based on textbook knowledge of acid-base reactivity, the preferential reaction pathway is that of an initial proton transfer from 7HQ to imidazole, and only at a later stage a transfer from imidazole to 7HQ, completing the 7HQ tautomerization reaction. An assessment of the molecular distribution functions and first-principles calculations of proton transfer reaction barriers reveal the underlying reasons for our observations.

8.
Phys Chem Chem Phys ; 25(12): 8755-8766, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36897117

ABSTRACT

We present the extension of our force field BILFF (Bio-Polymers in Ionic Liquids Force Field) to the bio-polymer cellulose. We already published BILFF parameters for mixtures of ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) with water. Our all-atom force field focuses on a quantitative reproduction of the hydrogen bonds in the complex mixture of cellulose, [EMIm]+, [OAc]- and water when compared to reference ab initio molecular dynamics (AIMD) simulations. To enhance the sampling, 50 individual AIMD simulations starting from different initial configurations were performed for cellulose in solvent instead of one long simulation, and the resulting averages were used for force field optimization. All cellulose force field parameters were iteratively adjusted starting from the literature force field of W. Damm et al. We were able to obtain a very good agreement with respect to both the microstructure of the reference AIMD simulations and experimental results such as the system density (even at higher temperatures) and the crystal structure. Our new force field allows performing very long simulations of large systems containing cellulose solvated in (aqueous) [EMIm][OAc] with almost ab initio accuracy.

9.
Chemphyschem ; 23(1): e202100519, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34586703

ABSTRACT

Sulfur co-polymers have recently drawn considerable attention as alternative cathode materials for lithium-sulfur batteries, thanks to their flexible atomic structure and the ability to provide high reversible capacity. Here, we report on the atomic structure of sulfur/1,3-diisopropenylbenzene co-polymers (poly(S-co-DIB)) based on the insights obtained from density-functional theory calculations. The focus is set on studying the local structural properties, namely the favorable sulfur chain length (Sn with n = 1 ⋯ 8 ) connecting two DIBs. In order to investigate the effects of the organic groups and sulfur chains separately, we perform series of atomic structure optimizations. We start from simple organic groups connected via sulfur chains and gradually change the structure of the organic groups until we reach a structure in which two DIB molecules are attached via sulfur chains. Additionally, to increase the structural sampling, we perform temperature-assisted minimum-energy structure search on slightly simpler model systems. We find that in DIB-Sn -DIB co-polymers, shorter sulfur chains with n ∼ 4 are preferred, where the stabilization is mostly brought about by the sulfur chains rather than the organic groups. The presented results, corresponding to the fully charged state of the cathode in the thermodynamic limit, have direct applications in the field of lithium-sulfur batteries with sulfur-polymer cathodes.

10.
Phys Chem Chem Phys ; 23(32): 17232-17241, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34369531

ABSTRACT

We present a computational study of vibrational circular dichroism (VCD) in solutions of (S)-lactic acid, relying on ab initio molecular dynamics (AIMD) and full solvation with bulk water. We discuss the effect of the hydrogen bond network on the aggregation behaviour of the acid: while aggregates of the solute represent conditions encountered in a weakly interacting solvent, the presence of water drastically interferes with the clusters - more strongly than originally anticipated. For both scenarios we computed the VCD spectra by means of nuclear velocity perturbation theory (NVPT). The comparison with experimental data allows us to establish a VCD-structure relationship that includes the solvent network around the chiral solute. We suggest that fundamental modes with strong polarisation such as the carbonyl stretching vibration can borrow VCD from the chirally restructured solvent cage, which extends the common explanatory models of VCD generation in aqueous solution.

11.
Micromachines (Basel) ; 12(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200610

ABSTRACT

Recently, a new method [P. Partovi-Azar and D. Sebastiani, J. Chem. Phys. 152, 064101 (2020)] was proposed to increase the efficiency of proton transfer energy calculations in density functional theory by using the T1 state with additional optimized effective potentials instead of calculations at S1. In this work, we focus on proton transfer from six prototypical photoacids to neighboring water molecules and show that the reference proton dissociation curves obtained at S1 states using time-dependent density functional theory can be reproduced with a reasonable accuracy by performing T1 calculations at density functional theory level with only one additional effective potential for the acidic hydrogens. We also find that the extra effective potentials for the acidic hydrogens neither change the nature of the T1 state nor the structural properties of solvent molecules upon transfer from the acids. The presented method is not only beneficial for theoretical studies on excited state proton transfer, but we believe that it would also be useful for studying other excited state photochemical reactions.

12.
J Phys Chem A ; 125(9): 1845-1859, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33651619

ABSTRACT

Bifunctional or amphoteric photoacids simultaneously present donor (acidic) and acceptor (basic) properties making them useful tools to analyze proton transfer reactions. In protic solvents, the proton exchange between the acid and the base is controlled by the acidity or basicity strength and typically occurs on two different pathways known as protolysis and hydrolysis. We report here how the addition of a formate base will alter the relative importance of the possible reaction pathways of the bifunctional photoacid 7-hydroxyquinoline (7HQ), which has been recently understood to predominantly involve a hydroxide/methoxide transport mechanism between the basic proton-accepting quinoline nitrogen site toward the proton-donating OH group with a time constant of 360 ps in deuterated methanol (CD3OD). We follow the reaction dynamics by probing the IR-active marker modes of the different charged forms of photoexcited 7HQ, and of formic acid (HCOOD) in CD3OD solution. A comparison of the transient IR spectra as a function of formate concentration, and classical molecular dynamics simulations enables us to identify distinct contributions of "tight" (meaning "contact") and "loose" (i.e., "solvent-separated") 7HQ-formate reaction pairs in our data. Our results suggest that depending on the orientation of the OH group with respect to the quinoline aromatic ring system, the presence of the formate molecule in a proton relay pathway facilitates a net proton transfer from the proton-donating OH group of 7HQ-N* via the methanol/formate bridge toward the quinoline N site.

13.
J Phys Chem B ; 125(5): 1331-1342, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33523656

ABSTRACT

Cyanobacteriochromes (CBCRs) are photoreceptors of the phytochrome superfamily showing remarkable variability in the wavelengths of the first electronic transition-sometimes denoted as Q band-compared to canonical phytochromes. Both classes carry the same cofactor, a bilin, but the molecular basis for the wide variation of their absorption properties is still a matter of debate. The interaction between the cofactor and the surrounding protein moiety has been proposed as a possible tuning factor. Here, we address the impact of hydrogen-bonding interaction between the covalently bound tetrapyrrole cofactor (phycocyanobilin, PCB) and a conserved tyrosine residue (Y302) in the second GAF (cGMP-specific phosphodiesterase, adenylyl cyclases, and FhlA) domain of the red-/green-switching CBCR AnPixJ (AnPixJg2). In the wild type, AnPixJg2 shows absorption maxima of 648 and 543 nm for the dark-adapted (Pr) and photoproduct (Pg) states, respectively. The Y302F mutation leads to the occurrence of an additional absorption band at 687 nm, which is assigned to a new spectroscopically identified sub-state called PIII. Similar spectral changes result upon mutating the Y302F-homologue in another representative red-/green-switching CBCR, Slr1393g3. Molecular dynamics simulations on the dark-adapted state suggest that the removal of the hydrogen bond leads to an additional PCB sub-state differing in its A- and D-ring geometries. The origin of the Q band satellite in the dark-adapted state is discussed.


Subject(s)
Cyanobacteria , Photoreceptors, Microbial , Phytochrome , Bacterial Proteins/genetics , Bile Pigments , Hydrogen Bonding , Photoreceptors, Microbial/genetics , Phytochrome/genetics , Propionates , Tyrosine
14.
Magn Reson (Gott) ; 2(2): 751-763, 2021.
Article in English | MEDLINE | ID: mdl-37905215

ABSTRACT

Among hyperpolarization techniques, quantum-rotor-induced polarization (QRIP), also known as the Haupt effect, is a peculiar one. It is, on the one hand, rather simple to apply by cooling and heating a sample. On the other hand, only the methyl groups of a few substances seem to allow for the effect, which strongly limits the applicability of QRIP. While it is known that a high tunnel frequency is required, the structural conditions for the effect to occur have not been exhaustively studied yet. Here we report on our efforts to heuristically recognize structural motifs in molecular crystals able to allow to produce QRIP.

15.
Molecules ; 25(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287426

ABSTRACT

The research in storage and conversion of energy is an everlasting process. The use of fuel cells is very tempting but up to now there are still several conceptual challenges to overcome. Especially, the requirement of liquid water causes difficulties due to the temperature limit. Therefore, imidazoles and triazoles are increasingly investigated in a manifold of experimental and theoretical publications as they are both very promising in overcoming this problem. Recently, triazoles were found to be superior to imidazoles in proton conduction. An ab-initio molecular dynamics simulation of pure triazole phases for investigating the behavior of both tautomer species of the triazole molecule has never been done. In this work, we investigate the structural and dynamical properties of two different solid phases and the liquid phase at two different temperatures. We are able to show how the distinct tautomers contribute to the mechanism of proton conduction, to compute dynamical properties of the four systems and to suggest a mechanism of reorientation in solid phase.


Subject(s)
Triazoles/chemistry , Hydrogen Bonding , Imidazoles/chemistry , Molecular Dynamics Simulation , Protons , Temperature , Water/chemistry
16.
Molecules ; 25(23)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255423

ABSTRACT

We present a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics-statistical approach for the interpretation of nuclear magnetic resonance (NMR) chemical shift patterns in phycocyanobilin (PCB). These were originally associated with colour tuning upon photoproduct formation in red/green-absorbing cyanobacteriochrome AnPixJg2 and red/far-red-absorbing phytochrome Cph1Δ2. We pursue an indirect approach without computation of the absorption frequencies since the molecular geometry of cofactor and protein are not accurately known. Instead, we resort to a heuristic determination of the conjugation length in PCB through the experimental NMR chemical shift patterns, supported by quantum chemical calculations. We have found a characteristic correlation pattern of 13C chemical shifts to specific bond orders within the π-conjugated system, which rests on the relative position of carbon atoms with respect to electron-withdrawing groups and the polarisation of covalent bonds. We propose the inversion of this regioselective relationship using multivariate statistics and to apply it to the known experimental NMR chemical shifts in order to predict changes in the bond alternation pattern. Therefrom the extent of electronic conjugation, and eventually the change in absorption frequency, can be derived. In the process, the consultation of explicit mesomeric formulae plays an important role to qualitatively account for possible conjugation scenarios of the chromophore. While we are able to consistently associate the NMR chemical shifts with hypsochromic and bathochromic shifts in the Pg and Pfr, our approach represents an alternative method to increase the explanatory power of NMR spectroscopic data in proteins.


Subject(s)
Carbon Isotopes/chemistry , Carbon/chemistry , Color , Models, Theoretical , Phycobilins/chemistry , Phycocyanin/chemistry , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Dynamics Simulation
17.
Molecules ; 25(15)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748878

ABSTRACT

We present 1,2,3-triazolium- and imidazolium-based ionic liquids (ILs) with aromatic anions as a new class of cellulose solvents. The two anions in our study, benzoate and salicylate, possess a lower basicity when compared to acetate and therefore should lead to a lower amount of N-heterocyclic carbenes (NHCs) in the ILs. We characterize their physicochemical properties and find that all of them are liquids at room temperature. By applying force field molecular dynamics (MD) simulations, we investigate the structure and dynamics of the liquids and find strong and long-lived hydrogen bonds, as well as significant π-π stacking between the aromatic anion and cation. Our ILs dissolve up to 8.5 wt.-% cellulose. Via NMR spectroscopy of the solution, we rule out chain degradation or derivatization, even after several weeks at elevated temperature. Based on our MD simulations, we estimate the enthalpy of solvation and derive a simple model for semi-quantitative prediction of cellulose solubility in ILs. With the help of Sankey diagrams, we illustrate the hydrogen bond network topology of the solutions, which is characterized by competing hydrogen bond donors and acceptors. The hydrogen bonds between cellulose and the anions possess average lifetimes in the nanosecond range, which is longer than found in common pure ILs.


Subject(s)
Anions/chemistry , Cellulose/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Triazoles/chemistry , Hydrogen Bonding , Molecular Dynamics Simulation , Molecular Structure , Solubility , Solvents/chemistry
18.
J Chem Phys ; 152(16): 164110, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32357794

ABSTRACT

We explicitly compute the non-equilibrium molecular dynamics of protons in the solid acid CsH2PO4 on the micrometer length scale via a multiscale Markov model: The molecular dynamics/matrix propagation (MDM) method. Within the MDM approach, the proton dynamics information of an entire molecular dynamics simulation can be condensed into a single M × M matrix (M is the number of oxygen atoms in the simulated system). Due to this drastic reduction in the complexity, we demonstrate how to increase the length and time scales in order to enable the simulation of inhomogeneities of CsH2PO4 systems at the nanometer scale. We incorporate explicit correlation of protonation dynamics with the protonation state of the neighboring proton sites and illustrate that this modification conserves the Markov character of the MDM method. We show that atomistic features such as the mean square displacement and the diffusion coefficient of the protons can be computed quantitatively from the matrix representation. Furthermore, we demonstrate the application potential of the scheme by computing the explicit dynamics of a non-equilibrium process in an 8 µm CsH2PO4 system during 5 ms.

19.
J Chem Phys ; 152(11): 114114, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32199428

ABSTRACT

We derive a matrix formalism for the simulation of long range proton dynamics for extended systems and timescales. On the basis of an ab initio molecular dynamics simulation, we construct a Markov chain, which allows us to store the entire proton dynamics in an M × M transition matrix (where M is the number of oxygen atoms). In this article, we start from common topology features of the hydrogen bond network of good proton conductors and utilize them as constituent constraints of our dynamic model. We present a thorough mathematical derivation of our approach and verify its uniqueness and correct asymptotic behavior. We propagate the proton distribution by means of transition matrices, which contain kinetic data from both ultra-short (sub-ps) and intermediate (ps) timescales. This concept allows us to keep the most relevant features from the microscopic level while effectively reaching larger time and length scales. We demonstrate the applicability of the transition matrices for the description of proton conduction trends in proton exchange membrane materials.

20.
Phys Chem Chem Phys ; 22(19): 10738-10752, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32154517

ABSTRACT

The high temperature phases of the solid acids CsHSeO4, CsHSO4 and CsH2PO4 show extraordinary high proton conductivities, while the low temperature phases do not conduct protons at all. We systematically investigate proton dynamics in the low and high temperature phases of these compounds by means of ab initio molecular dynamics simulations in order to develop a general picture of the proton transfer mechanism. For all of these compounds, proton conduction follows a Grotthuss mechanism via a combined proton transfer and subsequent structural reorientation of the environment. We demonstrate that the drastically reduced conductivity of the low temperature phases is caused by a highly ordered, rigid hydrogen bond network, while efficient long range proton transfer in the high temperature phases is enabled by the interplay of high proton transfer rates and frequent anion reorientation. Furthermore, we present a simple descriptor for the quantitative prediction of the diffusion coefficient within the solid acids family. As a side result, we show that the rate of the most elementary proton hopping reaction depends on the heavy-atom configuration of the nearest atoms in a ubiquitous manner, and is in turn almost independent from the global nature of the compound, i.e. whether it is organic or inorganic, ordered or disordered.

SELECTION OF CITATIONS
SEARCH DETAIL
...