Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791513

ABSTRACT

Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals in improving therapeutic responses. Stress- and drug-resistance mechanisms in NBs include alternative TrkAIII splicing of the neurotrophin receptor tropomyosin-related kinase A (NTRK1/TrkA), which correlates with post-therapeutic relapse and advanced-stage metastatic disease. The TrkAIII receptor variant exerts oncogenic activity in NB models by mechanisms that include stress-induced mitochondrial importation and activation. In this study, we characterize novel targetable and non-targetable participants in this pro-survival mechanism in TrkAIII-expressing SH-SY5Y NB cells, using dithiothreitol (DTT) as an activator and a variety of inhibitors by regular and immunoprecipitation Western blotting of purified mitochondria and IncuCyte cytotoxicity assays. We report that stress-induced TrkAIII misfolding initiates this mechanism, resulting in Grp78, Ca2+-calmodulin, adenosine ribosylating factor (Arf) and Hsp90-regulated mitochondrial importation. TrkAIII imported into inner mitochondrial membranes is cleaved by Omi/high temperature requirement protein A2 (HtrA2) then activated by a mechanism dependent upon calmodulin kinase II (CaMKII), alpha serine/threonine kinase (Akt), mitochondrial Ca2+ uniporter and reactive oxygen species (ROS), involving inhibitory mitochondrial protein tyrosine phosphatase (PTPase) oxidation, resulting in phosphoinositide 3 kinase (PI3K) activation of mitochondrial Akt, which enhances stress resistance. This novel pro-survival function for misfolded TrkAIII mitigates the cytotoxicity of mitochondrial Ca2+ homeostasis disrupted during integrated stress responses, and is prevented by clinically approved Trk and Akt inhibitors and also by inhibitors of 78kDa glucose regulated protein (Grp78), heat shock protein 90 (Hsp90), Ca2+-calmodulin and PI3K. This identifies Grp78, Ca2+-calmodulin, Hsp90, PI3K and Akt as novel targetable participants in this mechanism, in addition to TrkAIII, the inhibition of which has the potential to enhance the stress-induced elimination of TrkAIII-expressing NB cells, with the potential to improve therapeutic outcomes in NBs that exhibit TrkAIII expression and activation.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Mitochondria , Neuroblastoma , Receptor, trkA , Humans , Endoplasmic Reticulum Chaperone BiP/metabolism , Receptor, trkA/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Protein Folding , Signal Transduction/drug effects , Stress, Physiological/drug effects
2.
Cells ; 12(2)2023 01 05.
Article in English | MEDLINE | ID: mdl-36672171

ABSTRACT

Post-therapeutic relapse, poor survival rates and increasing incidence justify the search for novel therapeutic targets and strategies in cutaneous malignant melanoma (CMM). Within this context, a potential oncogenic role for TrkA in CMM is suggested by reports of NTRK1 amplification, enhanced TrkA expression and intracellular TrkA activation associated with poor prognosis. TrkA, however, exhibits tumour-suppressing properties in melanoma cell lines and has recently been reported not to be associated with CMM progression. To better understand these contradictions, we present the first analysis of potential oncogenic alternative TrkA mRNA splicing, associated with TrkA immunoreactivity, in CMMs, and compare the behaviour of fully spliced TrkA and the alternative TrkAIII splice variant in BRAF(V600E)-mutated A375 melanoma cells. Alternative TrkA splicing in CMMs was associated with unfolded protein response (UPR) activation. Of the several alternative TrkA mRNA splice variants detected, TrkAIII was the only variant with an open reading frame and, therefore, oncogenic potential. TrkAIII expression was more frequent in metastatic CMMs, predominated over fully spliced TrkA mRNA expression in ≈50% and was invariably linked to intracellular phosphorylated TrkA immunoreactivity. Phosphorylated TrkA species resembling TrkAIII were also detected in metastatic CMM extracts. In A375 cells, reductive stress induced UPR activation and promoted TrkAIII expression and, in transient transfectants, promoted TrkAIII and Akt phosphorylation, enhancing resistance to reductive stress-induced death, which was prevented by lestaurtinib and entrectinib. In contrast, fully spliced TrkA was dysfunctional in A375 cells. The data identify fully spliced TrkA dysfunction as a novel mechanism for reducing melanoma suppression, support a causal relationship between reductive stress, UPR activation, alternative TrkAIII splicing and TrkAIII activation and characterise a targetable oncogenic pro-survival role for TrkAIII in CMM.


Subject(s)
Melanoma , Neuroblastoma , Humans , Neuroblastoma/genetics , Receptor, trkA/genetics , Receptor, trkA/metabolism , Neoplasm Recurrence, Local , Alternative Splicing/genetics , Melanoma/genetics , Melanoma, Cutaneous Malignant
3.
Life (Basel) ; 12(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36362917

ABSTRACT

Neuroblastoma (NB) is a highly malignant embryonic extracranial solid tumor that arises from sympathoadrenal neuroblasts of neural crest origin. In addition to genetic factors, NB has been linked to maternal exposure to a variety of substances during pregnancy. Recent interest in the potential of nutrients to prevent cancer and reduce malignancy has resulted in the identification of several nutraceuticals including resveratrol, curcumin, and molecular components of garlic, which together with certain vitamins may help to prevent NB development. As NBs arise during fetal development and progress during early childhood, specific NB inhibiting nutraceuticals and vitamins could enhance the preventative influence of maternal nutrition and breast feeding on the development and early progression of NB. In this article, we review NB inhibitory nutraceuticals and vitamins, their mechanisms of action and expound their potential as maternal nutritional supplements to reduce NB development and progression during fetal growth and early childhood, whilst at the same time enhancing maternal, fetal, and infant health.

4.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36142807

ABSTRACT

Patients with advanced neuroblastoma (NB) receive multimodal clinical therapy, including the potent anthracycline chemotherapy drug doxorubicin (Dox). The acquisition of Dox resistance, however, is a major barrier to a sustained response and leads to a poor prognosis in advanced disease states, reinforcing the need to identify and inhibit Dox resistance mechanisms. In this context, we report on the identification and inhibition of a novel Dox resistance mechanism. This mechanism is characterized by the Dox-induced activation of the oncogenic TrkAIII alternative splice variant, resulting in increased Dox resistance, and is blocked by lestaurtinib, entrectinib, and crizotinib tyrosine kinase and LY294002 IP3-K inhibitors. Using time lapse live cell imaging, conventional and co-immunoprecipitation Western blots, RT-PCR, and inhibitor studies, we report that the Dox-induced TrkAIII activation correlates with proliferation inhibition and is CDK1- and Ca2+-uniporter-independent. It is mediated by ryanodine receptors; involves Ca2+-dependent interactions between TrkAIII, calmodulin and Hsp90; requires oxygen and oxidation; occurs within assembled ERGICs; and does not occur with fully spliced TrkA. The inhibitory effects of lestaurtinib, entrectinib, crizotinib, and LY294002 on the Dox-induced TrkAIII and Akt phosphorylation and resistance confirm roles for TrkAIII and IP3-K consistent with Dox-induced, TrkAIII-mediated pro-survival IP3K/Akt signaling. This mechanism has the potential to select resistant dormant TrkAIII-expressing NB cells, supporting the use of Trk inhibitors during Dox therapy in TrkAIII-expressing NBs.


Subject(s)
Neuroblastoma , Receptor, trkA , Alternative Splicing , Benzamides , Calmodulin , Cell Line, Tumor , Crizotinib/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Humans , Indazoles , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Oxygen/therapeutic use , Proto-Oncogene Proteins c-akt , Receptor, trkA/metabolism , Ryanodine Receptor Calcium Release Channel
5.
World J Stem Cells ; 13(7): 685-736, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34367474

ABSTRACT

Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.

6.
Int J Mol Sci ; 21(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153070

ABSTRACT

Merkel cell carcinomas (MCCs) are rare, aggressive, cutaneous neuroendocrine tumours, approximately 80% of which are caused by the genomic integration of Merkel cell polyomavirus (MCPyV). MCPyV-positive MCCs carry poor prognosis in approximately 70% of cases, highlighting the need for greater understanding of the oncogenic mechanisms involved in pathogenesis, progression and post-therapeutic relapse, and translation into novel therapeutic strategies. In a previous pilot study, we reported a potential relationship between MCPyV gene expression and oncogenic alternative Δ exon 6-7 TrkAIII splicing in formalin-fixed paraffin-embedded (FFPE) MCC tissues from a 12-patient cohort of >90% MCPyV-positive MCCs, diagnosed at San Salvatore Hospital, L'Aquila, Italy, characterising a new MCC subgroup and unveiling a novel potential MCPyV oncogenic mechanism and therapeutic target. This, however, could not be fully verified due to poor RNA quality and difficulty in protein extraction from FFPE tissues. Here, therefore, we extend our previous observations to confirm the relationship between MCPyV and oncogenic alternative Δ exon 6-7 TrkAIII splicing in fresh, nonfixed, MCPyV-positive MCC metastasis by detecting sequence-verified RT-PCR products, including full-length Δ exon 6-7 TrkAIII, and by Western blot detection of a 100 kDa TrkA protein isoform of identical size to 100 kDa Δ exon 6-7 TrkAIII expressed by stable transfected SH-SY5Y cells. We also report that in three MCC patients submitted for multidisciplinary treatment, including locoregional chemotherapy, MCPyV large T-antigen mRNA expression, Δ exon 6-7 TrkAIII mRNA expression and intracellular indirect immunofluorescence (IF) TrkA and phosphorylation protein isoform(s) immunoreactivity in FFPE tissues were not reduced in postchemotherapeutic-relapsed MCCs compared to pretherapeutic MCCs, extending the possible roles of this novel potential MCPyV oncogenic mechanism from MCC pathogenesis to post-therapeutic relapse and progression. Detection of alternative Δ exon 6-7 TrkAIII splicing in MCC, therefore, not only characterises a new MCPyV-positive MCC subgroup and unveils a novel potential MCPyV oncogenic mechanism but also identifies patients who may benefit from inhibitors of MCPyV T-antigen and/or TrkAIII expression or clinically approved Trk kinase inhibitors such as larotrectinib or entrectinib, which are known to inhibit activated TrkA oncogenes and to elicit durable responses in TrkA-fusion oncogene-driven cancers, supporting the call for a large-scale multicentre clinical study.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Merkel Cell , Polyomavirus Infections , Receptor, trkA/genetics , Skin Neoplasms , Tumor Virus Infections , Aged , Aged, 80 and over , Alternative Splicing/genetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Carcinoma, Merkel Cell/diagnosis , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/mortality , Carcinoma, Merkel Cell/therapy , Cell Transformation, Neoplastic/genetics , Combined Modality Therapy , Drug Administration Routes , Female , Humans , Interdisciplinary Communication , Italy/epidemiology , Male , Merkel cell polyomavirus/isolation & purification , Merkel cell polyomavirus/physiology , Middle Aged , Molecular Diagnostic Techniques , Mutation , Patient Care Team , Polyomavirus Infections/diagnosis , Polyomavirus Infections/genetics , Polyomavirus Infections/mortality , Polyomavirus Infections/therapy , Prognosis , Skin Neoplasms/diagnosis , Skin Neoplasms/genetics , Skin Neoplasms/mortality , Skin Neoplasms/therapy , Survival Analysis , Tumor Virus Infections/diagnosis , Tumor Virus Infections/genetics , Tumor Virus Infections/mortality , Tumor Virus Infections/therapy
7.
J Exp Clin Cancer Res ; 39(1): 110, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32536347

ABSTRACT

Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.


Subject(s)
Alternative Splicing , Epithelial-Mesenchymal Transition , Hypoxia/physiopathology , Neoplasms/pathology , Disease Progression , Humans , Neoplasms/genetics
8.
J Exp Clin Cancer Res ; 38(1): 482, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31805994

ABSTRACT

BACKGROUND: Identification of novel cancer-associated splice variants is of potential diagnostic, prognostic and therapeutic importance. NF-Y transcription factor is comprised of NF-YA, NF-YB and NF-YC subunits, binds inverted CCAAT-boxes in ≈70% of gene promoters, regulates > 1000 cancer-associated genes and proteins involved in proliferation, staminality, differentiation, apoptosis, metabolism and is subject to component alternative splicing. RT-PCR evaluation of alternative NF-YA splicing in primary human neuroblastomas (NBs), led to discovery of a novel NF-YAx splice variant, also expressed during mouse embryo development and induced by doxorubicin in NB cells. Here, we report the discovery and characterisation of NF-YAx and discus its potential roles in NB. METHODS: NF-YAx cDNA was RT-PCR-cloned from a stage 3 NB (provided by the Italian Association of Haematology and Paediatric Oncology, Genova, IT), sequenced and expressed as a protein using standard methods and compared to known fully-spliced NF-YAl and exon B-skipped NF-YAs isoforms in: EMSAs for capacity to form NF-Y complexes; by co-transfection, co-immunoprecipitation and Western blotting for capacity to bind Sp1; by IF for localisation; in AO/EtBr cell-death and colony formation assays for relative cytotoxicity, and by siRNA knockdown, use of inhibitors and Western blotting for potential mechanisms of action. Stable SH-SY5Y transfectants of all three NF-YA isoforms were also propagated and compared by RT-PCR and Western blotting for differences in cell-death and stem cell (SC)-associated gene expression, in cell-death assays for sensitivity to doxorubicin and in in vitro proliferation, substrate-independent growth and in vivo tumour xenograft assays for differences in growth and tumourigenic capacity. RESULTS: NF-YAx was characterized as a novel variant with NF-YA exons B, D and partial F skipping, detected in 20% of NF-YA positive NBs, was the exclusive isoform in a stage 3 NB, expressed in mouse stage E11.5-14 embryos and induced by doxorubicin in SH-SY5Y NB cells. The NF-YAx protein exhibited nuclear localisation, competed with other isoforms in CCAAT box-binding NF-Y complexes but, in contrast to other isoforms, did not bind Sp1. NF-YAx expression in neural-related progenitor and NB cells repressed Bmi1 expression, induced KIF1Bß expression and promoted KIF1Bß-dependent necroptosis but in NB cells also selected tumourigenic, doxorubicin-resistant, CSC-like sub-populations, resistant to NF-YAx cytotoxicity. CONCLUSIONS: The discovery of NF-YAx in NBs, its expression in mouse embryos and induction by doxorubicin in NB cells, unveils a novel NF-YA splice mechanism and variant, regulated by and involved in development, genotoxic-stress and NB. NF-YAx substitution of other isoforms in NF-Y complexes and loss of capacity to bind Sp1, characterises this novel isoform as a functional modifier of NF-Y and its promotion of KIF1Bß-dependent neural-lineage progenitor and NB cell necroptosis, association with doxorubicin-induced necroptosis and expression in mouse embryos coinciding with KIF1Bß-dependent sympathetic neuroblast-culling, confirm a cytotoxic function and potential role in suppressing NB initiation. On the other hand, the in vitro selection of CSC-like NB subpopulations resistant to NF-YAx cytotoxicity not only helps to explain high-level exclusive NF-YAx expression in a stage 3 NB but also supports a role for NF-YAx in disease progression and identifies a potential doxorubicin-inducible mechanism for post-therapeutic relapse.


Subject(s)
CCAAT-Binding Factor/genetics , Neuroblastoma/genetics , Animals , Cell Differentiation/genetics , Humans , Mice , Neuroblastoma/pathology , RNA Splicing , Transcription, Genetic , Transfection
9.
J Exp Clin Cancer Res ; 38(1): 424, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31640749

ABSTRACT

BACKGROUND: Merkel cell carcinomas (MCCs) are rare, aggressive, therapeutically-challenging skin tumours that are increasing in incidence and have poor survival rates. The majority are caused by genomic Merkel cell polyomavirus (MCPyV) integration and MCPyV T-antigen expression. Recently, a potential oncogenic role for the tropomyosin-related tyrosine kinase A receptor (TrkA) has been proposed in MCC. Alternative TrkAIII splicing is a TrkA oncogenic activation mechanism that can be promoted by SV40 large T-antigen, an analogue of MCPyV large T-antigen. In this pilot study, therefore, we have evaluated TrkAIII splicing as a novel potential oncogenic mechanism and therapeutic target in MCPyV positive MCC. METHODS: Formalin-fixed paraffin-embedded MCC tissues, consisting of 10 stage IV, 1 stage IIIB, 1 stage IIB, 4 stage IIA and 2 stage I tumours, from patients diagnosed and treated from September 2006 to March, 2019, at the University of L'Aquila, L'Aquila, Italy, were compared to 3 primary basal cell carcinomas (BCCs), 3 primary squamous cell carcinomas (SCCs) and 2 normal skin samples by RT-PCR for MCPyV large T-antigen, small T-antigen, VP-1 expression and alternative TrkAIII splicing and by indirect IF for evidence of intracellular TrkA isoform expression and activation. RESULTS: 9 of 10 Recurrent stage IV MCCs were from patients (P.1-3) treated with surgery plus loco-regional Melphalan chemotherapy and remaining MMCs, including 1 stage IV tumour, were from patients treated with surgery alone (P. 4-11). All MCPyV positive MCCs exhibiting MCPyV large T-antigen expression (17 of 18MCCs, 90%) exhibited alternative TrkAIII mRNA splicing (100%), which was exclusive in a significant number and predominant (> 50%) in all stage IV MCCs and the majority of stage 1-III MCCs. MCCs with higher TrkAIII to 18S rRNA expression ratios also exhibited strong or intermediate immunoreactivity to anti-TrkA antibodies, consistent with cytoplasmic TrkAIII expression and activation. In contrast, the MCPyV negative MCC, BCCs, SCCs and normal skin tissues all exhibited exclusive fully-spliced TrkA mRNA expression, associated with variable immunoreactivity for non-phosphorylated but not phosphorylated TrkA. CONCLUSIONS: MCPyV positive MCCs but not MCPyV negative MCC, BCCs and SCCs exhibit predominant alternative TrkAIII splicing, with evidence of intracellular TrkAIII activation. This establishes a new potential MCC subset, unveils a novel potential MCPyV oncogenic mechanism and identifies TrkAIII as a novel potential therapeutic target in MCPyV positive MCC.


Subject(s)
Receptor, trkA/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Merkel Cell , Female , Humans , Male , Middle Aged , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...