Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(12): 108410, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38034351

ABSTRACT

Spindle bipolarity is critical for genomic integrity. As centrosome number often dictates bipolarity, tight control of centrosome assembly is vital for faithful cell division. The master centrosome regulator ZYG-1/Plk4 plays a pivotal role in this process. In C. elegans, casein kinase II (CK2) negatively regulates centrosome duplication by controlling centrosome-associated ZYG-1 levels. Here, we investigated CK2 as a regulator of ZYG-1 and its impact on centrosome assembly. We show that CK2 phosphorylates ZYG-1 in vitro and physically interacts with ZYG-1 in vivo. Depleting CK2 or blocking ZYG-1 phosphorylation at CK2 target sites leads to centrosome amplification. Non-phosphorylatable ZYG-1 mutants exhibit elevated ZYG-1 levels, leading to increased ZYG-1 and downstream factors at centrosomes, thus driving centrosome amplification. Moreover, inhibiting the 26S proteasome prevents degradation of the phospho-mimetic ZYG-1. Our findings suggest that CK2-dependent phosphorylation of ZYG-1 controls ZYG-1 levels via proteasomal degradation to limit centrosome number.

2.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37333374

ABSTRACT

Spindle bipolarity is critical for genomic integrity. Given that centrosome number often dictates mitotic bipolarity, tight control of centrosome assembly is vital for the fidelity of cell division. The kinase ZYG-1/Plk4 is a master centrosome factor that is integral for controlling centrosome number and is modulated by protein phosphorylation. While autophosphorylation of Plk4 has been extensively studied in other systems, the mechanism of ZYG-1 phosphorylation in C. elegans remains largely unexplored. In C. elegans, Casein Kinase II (CK2) negatively regulates centrosome duplication by controlling centrosome-associated ZYG-1 levels. In this study, we investigated ZYG-1 as a potential substrate of CK2 and the functional impact of ZYG-1 phosphorylation on centrosome assembly. First, we show that CK2 directly phosphorylates ZYG-1 in vitro and physically interacts with ZYG-1 in vivo. Intriguingly, depleting CK2 or blocking ZYG-1 phosphorylation at putative CK2 target sites leads to centrosome amplification. In the non-phosphorylatable (NP)-ZYG-1 mutant embryo, the overall levels of ZYG-1 are elevated, leading to an increase in centrosomal ZYG-1 and downstream factors, providing a possible mechanism of the NP-ZYG-1 mutation to drive centrosome amplification. Moreover, inhibiting the 26S proteasome blocks degradation of the phospho-mimetic (PM)-ZYG-1, while the NP-ZYG-1 mutant shows partial resistance to proteasomal degradation. Our findings suggest that site-specific phosphorylation of ZYG-1, partly mediated by CK2, controls ZYG-1 levels via proteasomal degradation, limiting centrosome number. We provide a mechanism linking CK2 kinase activity to centrosome duplication through direct phosphorylation of ZYG-1, which is critical for the integrity of centrosome number.

3.
J Cell Sci ; 134(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34308970

ABSTRACT

Aberrant centrosome numbers are associated with human cancers. The levels of centrosome regulators positively correlate with centrosome number. Thus, tight control of centrosome protein levels is critical. In Caenorhabditis elegans, the anaphase-promoting complex/cyclosome and its co-activator FZR-1 (APC/CFZR-1), a ubiquitin ligase, negatively regulates centrosome assembly through SAS-5 degradation. In this study, we report the C. elegans ZYG-1 (Plk4 in humans) as a potential substrate of APC/CFZR-1. Inhibiting APC/CFZR-1 or mutating a ZYG-1 destruction (D)-box leads to elevated ZYG-1 levels at centrosomes, restoring bipolar spindles and embryonic viability to zyg-1 mutants, suggesting that APC/CFZR-1 influences centrosomal ZYG-1 via the D-box motif. We also show the Slimb/ßTrCP-binding (SB) motif is critical for ZYG-1 degradation, substantiating a conserved mechanism by which ZYG-1/Plk4 stability is regulated by the SKP1-CUL1-F-box (Slimb/ßTrCP)-protein complex (SCFSlimb/ßTrCP)-dependent proteolysis via the conserved SB motif in C. elegans. Furthermore, we show that co-mutating ZYG-1 SB and D-box motifs stabilizes ZYG-1 in an additive manner, suggesting that the APC/CFZR-1 and SCFSlimb/ßTrCP ubiquitin ligases function cooperatively for timely ZYG-1 destruction in C. elegans embryos where ZYG-1 activity remains at threshold level to ensure normal centrosome number.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Centrosome , Anaphase-Promoting Complex-Cyclosome/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Humans , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , beta-Transducin Repeat-Containing Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...