Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 2197, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259297

ABSTRACT

The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely used in biophysical/chemical assays and drug treatments. We present single-molecule experiments and a three-state statistical mechanical model that provide a quantitative understanding of the interplay between B-DNA, overstretched DNA and intercalated DNA. The predictions of this model include a hitherto unconfirmed hyperstretched state, twice the length of B-DNA. Our force-fluorescence experiments confirm this hyperstretched state and reveal its sequence dependence. These results pin down the physical principles that govern DNA mechanics under the influence of tension and biochemical reactions. A predictive understanding of the possibilities and limitations of DNA extension can guide refined exploitation of DNA in, e.g., programmable soft materials and DNA origami applications.


Subject(s)
DNA/chemistry , Models, Molecular , Nucleic Acid Conformation , Base Sequence/genetics , Benzoxazoles/chemistry , Biomechanical Phenomena/genetics , DNA/genetics , Elasticity , Fluorescence , Quinolinium Compounds/chemistry , Single Molecule Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...