Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 626(7997): 207-211, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086418

ABSTRACT

Enhancers control gene expression and have crucial roles in development and homeostasis1-3. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the Drosophila melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system.


Subject(s)
Deep Learning , Drosophila melanogaster , Embryo, Nonmammalian , Enhancer Elements, Genetic , Neural Networks, Computer , Organ Specificity , Animals , Chromatin/genetics , Chromatin/metabolism , Datasets as Topic , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Enhancer Elements, Genetic/genetics , Organ Specificity/genetics , Reproducibility of Results , Single-Cell Analysis , Transposases/metabolism , Synthetic Biology/methods
2.
Science ; 377(6606): eabn5800, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35926038

ABSTRACT

Drosophila melanogaster is a powerful, long-standing model for metazoan development and gene regulation. We profiled chromatin accessibility in almost 1 million and gene expression in half a million nuclei from overlapping windows spanning the entirety of embryogenesis. Leveraging developmental asynchronicity within embryo collections, we applied deep neural networks to infer the age of each nucleus, resulting in continuous, multimodal views of molecular and cellular transitions in absolute time. We identify cell lineages; infer their developmental relationships; and link dynamic changes in enhancer usage, transcription factor (TF) expression, and the accessibility of TFs' cognate motifs. With these data, the dynamics of enhancer usage and gene expression can be explored within and across lineages at the scale of minutes, including for precise transitions like zygotic genome activation.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Embryonic Development , Gene Expression Regulation, Developmental , Animals , Cell Lineage/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryonic Development/genetics , Enhancer Elements, Genetic , Neural Networks, Computer , Single-Cell Analysis
3.
Dev Cell ; 57(4): 496-511.e8, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35176234

ABSTRACT

Developmental progression and cellular diversity are largely driven by transcription factors (TFs); yet, characterizing their loss-of-function phenotypes remains challenging and often disconnected from their underlying molecular mechanisms. Here, we combine single-cell regulatory genomics with loss-of-function mutants to jointly assess both cellular and molecular phenotypes. Performing sci-ATAC-seq at eight overlapping time points during Drosophila mesoderm development could reconstruct the developmental trajectories of all major muscle types and reveal the TFs and enhancers involved. To systematically assess mutant phenotypes, we developed a single-nucleus genotyping strategy to process embryo pools of mixed genotypes. Applying this to four TF mutants could identify and quantify their characterized phenotypes de novo and discover new ones, while simultaneously revealing their regulatory input and mode of action. Our approach is a general framework to dissect the functional input of TFs in a systematic, unbiased manner, identifying both cellular and molecular phenotypes at a scale and resolution that has not been feasible before.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation, Developmental/genetics , Phenotype , Transcription Factors/metabolism , Animals , Drosophila/metabolism , Enhancer Elements, Genetic/genetics , Gene Regulatory Networks/genetics , Genomics
4.
Genome Biol ; 23(1): 8, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34991671

ABSTRACT

While it is established that the functional impact of genetic variation can vary across cell types and states, capturing this diversity remains challenging. Current studies using bulk sequencing either ignore this heterogeneity or use sorted cell populations, reducing discovery and explanatory power. Here, we develop scDALI, a versatile computational framework that integrates information on cellular states with allelic quantifications of single-cell sequencing data to characterize cell-state-specific genetic effects. We apply scDALI to scATAC-seq profiles from developing F1 Drosophila embryos and scRNA-seq from differentiating human iPSCs, uncovering heterogeneous genetic effects in specific lineages, developmental stages, or cell types.


Subject(s)
Induced Pluripotent Stem Cells , Single-Cell Analysis , Gene Expression Regulation
5.
Article in English | MEDLINE | ID: mdl-38410680

ABSTRACT

Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.

6.
Dev Cell ; 52(6): 699-713.e11, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32208162

ABSTRACT

LMNA encodes nuclear Lamin A/C that tethers lamina-associated domains (LADs) to the nuclear periphery. Mutations in LMNA cause degenerative disorders including the premature aging disorder Hutchinson-Gilford progeria, but the mechanisms are unknown. We report that Ser22-phosphorylated (pS22) Lamin A/C was localized to the nuclear interior in human fibroblasts throughout the cell cycle. pS22-Lamin A/C interacted with a subset of putative active enhancers, not LADs, at locations co-bound by the transcriptional activator c-Jun. In progeria-patient fibroblasts, a subset of pS22-Lamin A/C-binding sites were lost, whereas new pS22-Lamin A/C-binding sites emerged in normally quiescent loci. New pS22-Lamin A/C binding was accompanied by increased histone acetylation, increased c-Jun binding, and upregulation of nearby genes implicated in progeria pathophysiology. These results suggest that Lamin A/C regulates gene expression by enhancer binding. Disruption of the gene regulatory rather than LAD tethering function of Lamin A/C may underlie the pathogenesis of disorders caused by LMNA mutations.


Subject(s)
Cell Nucleus/metabolism , Enhancer Elements, Genetic , Lamin Type A/genetics , Mutation , Progeria/genetics , Active Transport, Cell Nucleus , Adolescent , Binding Sites , Cell Line , Cells, Cultured , Child , Fibroblasts/metabolism , Humans , Lamin Type A/chemistry , Lamin Type A/metabolism , Male , Protein Binding
7.
Shock ; 48(3): 313-320, 2017 09.
Article in English | MEDLINE | ID: mdl-28319494

ABSTRACT

RATIONALE: Sepsis-induced acute kidney injury (AKI) is a common condition with high morbidity and mortality. Neutrophil-derived heparin-binding protein (HBP) induces vascular leakage and is a promising biomarker of sepsis-induced organ dysfunction. It remains unknown if HBP is prognostic of AKI in septic shock and if HBP could play a role in the pathophysiology of sepsis-induced AKI. OBJECTIVES: To determine the association of plasma HBP levels with development of AKI, investigate the role of HBP in the pathophysiology of sepsis-induced AKI, and test the effect of blocking HBP using heparin derivatives. METHODS: In 296 septic shock patients from the randomized multicenter Vasopressin and Septic Shock Trial (VASST) plasma HBP levels were associated with development of AKI and need for renal replacement therapy (RRT). Human renal tubular cells were exposed to recombinant HBP to evaluate inflammation and heparin derivatives were used to abrogate these effects. Finally, mice were exposed to HBP with and without heparin derivatives and the kidneys examined for signs of inflammation. FINDINGS: Plasma HBP levels were significantly higher in patients with AKI and those requiring RRT. HBP levels identified patients with moderate AKI with an area under curve (AUC) of 0.85. HBP increased IL-6 production in renal tubular epithelial cells. Different heparin derivatives abrogated the HBP-induced increased inflammatory response in vitro and in vivo. CONCLUSION: Elevated plasma HBP is associated with development of sepsis-induced AKI and HBP is involved in its pathophysiology. Our studies suggest that heparin(s) could be tested for efficacy and safety of prevention of sepsis-induced AKI.


Subject(s)
Acute Kidney Injury/blood , Antimicrobial Cationic Peptides/blood , Carrier Proteins/blood , Sepsis/drug therapy , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Adult , Aged , Biomarkers/blood , Blood Proteins , Cell Line , Female , Heparin/administration & dosage , Humans , Male , Middle Aged , Sepsis/blood , Sepsis/complications , Vasopressins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...