Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Phys Rev E ; 109(4-1): 044133, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38755826

ABSTRACT

Anomalous diffusion processes, characterized by their nonstandard scaling of the mean-squared displacement, pose a unique challenge in classification and characterization. In a previous study [Mangalam et al., Phys. Rev. Res. 5, 023144 (2023)2643-156410.1103/PhysRevResearch.5.023144], we established a comprehensive framework for understanding anomalous diffusion using multifractal formalism. The present study delves into the potential of multifractal spectral features for effectively distinguishing anomalous diffusion trajectories from five widely used models: fractional Brownian motion, scaled Brownian motion, continuous-time random walk, annealed transient time motion, and Lévy walk. We generate extensive datasets comprising 10^{6} trajectories from these five anomalous diffusion models and extract multiple multifractal spectra from each trajectory to accomplish this. Our investigation entails a thorough analysis of neural network performance, encompassing features derived from varying numbers of spectra. We also explore the integration of multifractal spectra into traditional feature datasets, enabling us to assess their impact comprehensively. To ensure a statistically meaningful comparison, we categorize features into concept groups and train neural networks using features from each designated group. Notably, several feature groups demonstrate similar levels of accuracy, with the highest performance observed in groups utilizing moving-window characteristics and p varation features. Multifractal spectral features, particularly those derived from three spectra involving different timescales and cutoffs, closely follow, highlighting their robust discriminatory potential. Remarkably, a neural network exclusively trained on features from a single multifractal spectrum exhibits commendable performance, surpassing other feature groups. In summary, our findings underscore the diverse and potent efficacy of multifractal spectral features in enhancing the predictive capacity of machine learning to classify anomalous diffusion processes.

3.
J Phys Chem Lett ; 14(35): 7910-7923, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37646323

ABSTRACT

Single-particle traces of the diffusive motion of molecules, cells, or animals are by now routinely measured, similar to stochastic records of stock prices or weather data. Deciphering the stochastic mechanism behind the recorded dynamics is vital in understanding the observed systems. Typically, the task is to decipher the exact type of diffusion and/or to determine the system parameters. The tools used in this endeavor are currently being revolutionized by modern machine-learning techniques. In this Perspective we provide an overview of recently introduced methods in machine-learning for diffusive time series, most notably, those successfully competing in the anomalous diffusion challenge. As such methods are often criticized for their lack of interpretability, we focus on means to include uncertainty estimates and feature-based approaches, both improving interpretability and providing concrete insight into the learning process of the machine. We expand the discussion by examining predictions on different out-of-distribution data. We also comment on expected future developments.

4.
Nat Commun ; 13(1): 6717, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344559

ABSTRACT

Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusion model and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a well-calibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.


Subject(s)
Deep Learning , Bayes Theorem , Diffusion , Motion , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...