Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(37): 15173-15179, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37669231

ABSTRACT

The deoxygenation of environmental pollutants CO2 and NO2- to form value-added products is reported. CO2 reduction with subsequent CO release and NO2- conversion to NO are achieved via the starting complex Fe(PPhPDI)Cl2 (1). 1 contains the redox-active pyridinediimine (PDI) ligand with a hemilabile phosphine located in the secondary coordination sphere. 1 was reduced with SmI2 under a CO2 atmosphere to form the direduced monocarbonyl Fe(PPhPDI)(CO) (2). Subsequent CO release was achieved via oxidation of 2 using the NOx- source, NO2-. The resulting [Fe(PPhPDI)(NO)]+ (3) mononitrosyl iron complex (MNIC) is formed as the exclusive reduction product due to the hemilabile phosphine. 3 was investigated computationally to be characterized as {FeNO}7, an unusual intermediate-spin Fe(III) coupled to triplet NO- and a singly reduced PDI ligand.

2.
Inorg Chem ; 60(21): 15901-15909, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34514780

ABSTRACT

Selective coupling of NO by a nonclassical dinuclear dinitrosyliron complex (D-DNIC) to form N2O is reported. The coupling is facilitated by the pyridinediimine (PDI) ligand scaffold, which enables the necessary denticity changes to produce mixed-valent, electron-deficient tethered DNICs. One-electron oxidation of the [{Fe(NO)2}]210/10 complex Fe2(PyrrPDI)(NO)4 (4) results in NO coupling to form N2O via the mixed-valent {[Fe(NO)2]2}9/10 species, which possesses an electron-deficient four-coordinate {Fe(NO)2}10 site, crucial in N-N bond formation. The hemilability of the PDI scaffold dictates the selectivity in N-N bond formation because stabilization of the five-coordinate {Fe(NO)2}9 site in the mixed-valent [{Fe(NO)2}]29/10 species, [Fe2(Pyr2PDI)(NO)4][PF6] (6), does not result in an electron-deficient, four-coordinate {Fe(NO)2}10 site, and hence no N-N coupling is observed.

3.
Nanotechnology ; 31(27): 275706, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32224519

ABSTRACT

Fe3O4 nanoparticles (NPs) with different shapes have been prepared by a 'solventless' synthesis approach to probe shape anisotropy effects on the magnetic and inductive heating properties. Various shapes including spheres, octahedrons, cubes, rods, wires, and multipods are obtained through alterations in reaction conditions such as the ratio of precursor to surfactant content and heating rate. Magnetic and Mössbauer measurements reveal better stoichiometry in anisotropic-shaped Fe3O4 NPs than that in the spherical and multipod NPs. As a result, the magnetization value of the anisotropic-shaped NPs approaches the value for bulk material (∼86 emu g-1). More surprisingly, the Verwey transition, which is a characteristic phase transition of bulk magnetite structure, is observed near 120 K in the anisotropic-shaped NPs, which further corroborates the fact that these NPs possess better stoichiometry compared to the spherical and multipod-shaped NPs. Other than the improved magnetic properties, these anisotropic-shaped NPs are more effective for hyperthermia applications. For example, compared to the conventional spherical NPs, the nanowires show much higher SAR value up to 846 W g-1, making them a potential candidate for practical hyperthermia treatment. In particular, the octahedral NPs shows an SAR value higher than the same size spherical NPs, which demonstrates the importance of occurrence of the Verwey transition in Fe3O4 NPs for better stoichiometric and higher heating.

4.
J Am Chem Soc ; 140(49): 17040-17050, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30427681

ABSTRACT

Incorporation of the triad of redox activity, hemilability, and proton responsivity into a single ligand scaffold is reported. Due to this triad, the complexes Fe(PyrrPDI)(CO)2 (3) and Fe(MorPDI)(CO)2 (4) display 40-fold enhancements in the initial rate of NO2- reduction, with respect to Fe(MeOPDI)(CO)2 (7). Utilizing the proper sterics and p Ka of the pendant base(s) to introduce hemilability into our ligand scaffolds, we report unusual {FeNO} x mononitrosyl iron complexes (MNICs) as intermediates in the NO2- reduction reaction. The {FeNO} x species behave spectroscopically and computationally similar to {FeNO}7, an unusual intermediate-spin Fe(III) coupled to triplet NO- and a singly reduced PDI ligand. These {FeNO} x MNICs facilitate enhancements in the initial rate.


Subject(s)
Coordination Complexes/chemistry , Nitrites/chemistry , Protons , Coordination Complexes/chemical synthesis , Density Functional Theory , Iron/chemistry , Kinetics , Ligands , Models, Chemical , Nitric Oxide/chemical synthesis , Oxidation-Reduction
5.
Inorg Chem ; 57(16): 9601-9610, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-29608297

ABSTRACT

Metal complexes composed of redox-active pyridinediimine (PDI) ligands are capable of forming ligand-centered radicals. In this Forum article, we demonstrate that integration of these types of redox-active sites with bioinspired secondary coordination sphere motifs produce direduced complexes, where the reduction potential of the ligand-based redox sites is uncoupled from the secondary coordination sphere. The utility of such ligand design was explored by encapsulating redox-inactive Lewis acidic cations via installation of a pendant benzo-15-crown-5 in the secondary coordination sphere of a series of Fe(PDI) complexes. Fe(15bz5PDI)(CO)2 was shown to encapsulate the redox-inactive alkali ion, Na+, causing only modest (31 mV) anodic shifts in the ligand-based redox-active sites. By uncoupling the Lewis acidic sites from the ligand-based redox sites, the pendant redox-inactive ion, Na+, can entice the corresponding counterion, NO2-, for reduction to NO. The subsequent initial rate analysis reveals an acceleration in anion reduction, confirming this hypothesis.

6.
Chem Commun (Camb) ; 52(73): 11016-9, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27539064

ABSTRACT

The proton-responsive pyridinediimine ligand, (DEA)PDI (where (DEA)PDI = [(2,6-(i)PrC6H3)(N[double bond, length as m-dash]CMe)(N(Et)2C2H4)(N[double bond, length as m-dash]CMe)C5H3N]) was utilized for the reduction of NO2(-) to NO. Nitrite reduction is facilitated by the protonated secondary coordination sphere coupled with the ligand-based redox-active sites of [Fe(H(DEA)PDI)(CO)2](+) and results in the formation of the {Fe(NO)2}(9) DNIC, [Fe((DEA)PDI)(NO)2](+).

7.
Inorg Chem ; 55(2): 555-7, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26692111

ABSTRACT

A series of pyridinediimine (PDI) iron complexes that contain a pendant 15-crown-5 located in the secondary coordination sphere were synthesized and characterized. The complex Fe((15c5)PDI)(CO)2 (2) was shown in both the solid state and solution to encapsulate redox-inactive metal ions. Modest shifts in the reduction potential of the metal-ligand scaffold were observed upon encapsulation of either Na(+) or Li(+).


Subject(s)
Imines/chemistry , Iron Compounds/chemistry , Metals/chemistry , Pyridines/chemistry , Oxidation-Reduction
8.
Inorg Chem ; 54(15): 7239-48, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26204455

ABSTRACT

Utilizing the pyridinediimine ligand [(2,6-(i)PrC6H3)N═CMe)(N((i)Pr)2C2H4)N═CMe)C5H3N] (didpa), the zinc(II) and iron(II) complexes Zn(didpa)Cl2 (1), Fe(didpa)Cl2 (2), [Zn(Hdidpa)Cl2][PF6] (3), [Fe(Hdidpa)Cl2][PF6] (4), Zn(didpa)Br2 (5), and [Zn(Hdidpa)Br2][PF6] (6), Fe(didpa)(CO)2 (7), and [Fe(Hdidpa)(CO)2][PF6] (8) were synthesized and characterized. These complexes allowed for the study of the secondary coordination sphere pendant base and the redox-activity of the didpa ligand scaffold. The protonated didpa ligand is capable of forming metal halogen hydrogen bonds (MHHBs) in complexes 3, 4, and 6. The solution behavior of the MHHBs was probed via pKa measurements and (1)H NMR titrations of 3 and 6 with solvents of varying H-bond accepting strength. The H-bond strength in 3 and 6 was calculated in silico to be 5.9 and 4.9 kcal/mol, respectively. The relationship between the protonation state and the ligand-based redox activity was probed utilizing 7 and 8, where the reduction potential of the didpa scaffold was found to shift by 105 mV upon protonation of the reduced ligand in Fe(didpa)(CO)2.


Subject(s)
Imines/chemistry , Iron/chemistry , Organometallic Compounds/chemistry , Protons , Zinc/chemistry , Halogens/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Ligands , Models, Molecular , Molecular Conformation , Oxidation-Reduction
9.
Dalton Trans ; 44(15): 6711-4, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25789944

ABSTRACT

The Schiff-base condensation of the R,R-(+)-diamine () with 2,6-diacetyl pyridine in the presence of Fe(II) affords the macrocyclic complex [Fe(dpN3O2)(CN)2] () (dp = diphenyl) with ligand centred chirality comprising of a 1 : 1 mixture of LS 6- and HS 7-coordinate Fe(II) centres. Variable temperature magnetic susceptibility and Mössbauer studies reveal that () undergoes an incomplete thermal SCO transition with a T1/2 = 250 K as well as a LIESST effect. In contrast its racemic counterpart () comprises of mostly LS Fe(II) and exhibits no LIESST properties.

10.
Science ; 347(6223): 746-50, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25678658

ABSTRACT

Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging. We show­using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques­that in unpigmented rodent enamel, Mg(2+) is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.


Subject(s)
Calcium Phosphates/chemistry , Dental Enamel/chemistry , Dental Enamel/ultrastructure , Animals , Incisor/chemistry , Incisor/ultrastructure , Mice , Microscopy, Electron, Scanning , X-Ray Absorption Spectroscopy
11.
Inorg Chem ; 51(17): 9168-70, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22906522

ABSTRACT

A synthetic cycle for the CO(2)-to-CO conversion (with subsequent release of CO) based on iron(II), a redox-active pydridinediimine ligand (PDI), and an O-atom acceptor is reported. This conversion is a passive-type ligand-based reduction, where the electrons for the CO(2) conversion are supplied by the reduced PDI ligand and the ferrous state of the iron is conserved.

12.
Inorg Chem ; 50(15): 7334-43, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21732652

ABSTRACT

Herein, we describe the preparation of three new bidentate π-extended derivatives of the ligand N-phenyl-2-pyridinalimine (ppi) containing a 3-thienyl (4) substituent at position 4 of the aniline ring or 2-thienyl (6) or phenyl (2) substituents at each of the 2,5 positions of the aniline rings. Three iron(2+) complexes (7-9) containing these ligands were prepared by combining two equivalents each of 2, 4, or 6 with Fe(NCS)(2), and the resulting neutral, six-coordinate complexes were fully characterized, including with single crystal X-ray diffraction experiments in the case of complexes 7 and 9. Variable temperature magnetic susceptibility and Mössbauer experiments confirm the presence of spin-crossover in complexes 7 and 8, and the unusual solid state variable temperature magnetic properties of complex 9 likely result from crystal packing forces. Electropolymerization of the 2,5-dithienyl-substituted complex (9) produces a conducting and electrochromic metallopolymer film (poly-9).

13.
Inorg Chem ; 48(13): 6109-16, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19432469

ABSTRACT

We describe the synthesis of a new 3,3'-diethynyl-2,2'-bithienyl bridging bis-QsalH ligand (5), and the preparation of four bimetallic iron(3+) complexes containing 5 with Cl(-) (6), SCN(-) (7), PF(6)(-) (8), and ClO(4)(-) (9) counteranions. We show with variable temperature magnetic susceptibility, Mossbauer, and electron paramagnetic resonance (EPR) spectroscopy that each complex undergoes a spin-crossover in the solid state. In all four complexes, we observe very gradual and incomplete S = 5/2, 5/2 to S = 1/2, 1/2 spin-crossover processes, with three of the four complexes exhibiting nearly identical magnetic properties. We investigated the electronic properties of the complexes by cyclic and differential pulse voltammetry, and attempted electropolymerization reactions with acetonitrile solutions of the complexes, which were not successful. Each complex features a single iron(3+) reduction wave at approximately -0.7 V (versus ferrocene), and the oxidation of the 2,2'-bithienyl substituent occurs at +1.1 V. These materials represent a new structural paradigm for the study of rare bimetallic iron(3+) spin-crossover complexes.

14.
Inorg Chem ; 48(2): 699-707, 2009 Jan 19.
Article in English | MEDLINE | ID: mdl-19053331

ABSTRACT

The synthesis of a new 3-ethynylthienyl-substituted QsalH ligand (QsalH is the short form for N-(8-quinolyl)salicylaldimine) (ThEQsalH 3), and the preparation, electronic, and magnetic properties of three homoleptic and cationic iron(3+) complexes containing this ligand with PF(6)(-) 4, SCN(-) 5, and ClO(4)(-) 6 counteranions are reported. In all three complexes a spin-crossover is observed in the solid state by variable temperature magnetic susceptibility measurements and Mossbauer spectroscopy, indicating that the synthetic modification of the QsalH ligand has not significantly altered the electronics at the metal center. This includes the observation of a very rare S = 5/2 to 3/2 spin-crossover in a non-porphyrin iron(3+) complex 5. The molecular structure and magnetic properties of an unusual iron(2+) complex 7 generated by reduction of complex 6 serendipitously during a recrystallization attempt in aerobic acetone solution is also reported. Complexes 4-6 feature iron(3+) reduction and oxidation of the thiophene ring at potentials of approximately -0.7 and +1.2 V (vs Fc), respectively.

15.
Inorg Chem ; 38(21): 4724-4736, 1999 Oct 18.
Article in English | MEDLINE | ID: mdl-11671197

ABSTRACT

Three novel bis(primary amine)iron(II) porphyrins [Fe(TPP)(RNH(2))(2)], where RNH(2) = 1-butylamine, benzylamine, and phenethylamine, have been synthesized and characterized by X-ray crystallography and IR, electronic, and Mössbauer spectroscopy. The compounds provide unprecedented structural data for the coordination of primary amines by iron(II) porphyrins. The Fe-N(ax) distances of [Fe(TPP)(1-BuNH(2))(2)], [Fe(TPP)(BzNH(2))(2)], and [Fe(TPP)(PhCH(2)CH(2)NH(2))(2)] are 2.039(3), 2.043(3), and 2.028(2) Å, respectively. The Fe-N(p) distances of the three complexes average 1.990(2) Å. The zero-field Mössbauer spectra (5-300 K) show comparable isomer shifts (0.393(1)-0.493(1) mm/s) and quadrupole splittings (1.144(6)-1.204(3) mm/s) that are consistent with an S = 0 iron(II) assignment in each case. The bis(primary amine) complexes are structurally and spectroscopically similar to [Fe(TPP)(Py)(2)] derivatives, where Py = an unsubstituted pyridine. Molecular mechanics (MM) calculations with a force field parametrized for primary and secondary amine complexes of iron(II) porphyrins show that stable conformations arise when the alpha-CH(2) and NH(2) protons of the coordinated ligands are staggered relative to the Fe-N(p) bonds of the porphyrin core. The lowest energy conformations of the three [Fe(TPP)(RNH(2))(2)] complexes therefore have the ligand alpha-carbons positioned directly over the Fe-N(p) bonds of the porphyrin core. The X-ray structure of [Fe(TPP)(PhCH(2)CH(2)NH(2))(2)] lies close to the global minimum (phi(1), phi(2) = 0, 180 degrees ) on the potential surface, while [Fe(TPP)(BzNH(2))(2)] and [Fe(TPP)(1-BuNH(2))(2)] show deviations that may be attributed to packing interactions in the solid and intrinsically low barriers to axial ligand rotation (<0.5 kcal/mol). Three types of minimum energy conformation are accessible for [Fe(TPP)(Pip)(2)]. The lowest energy conformation has an S(4)-ruffled porphyrin core. The conformation which matches the X-ray structure (Radonovich, L. J.; Bloom, A.; Hoard, J. L. J. Am. Chem. Soc. 1972, 94, 2073-2078) is a local minimum (1.6 kcal/mol higher in energy than the global minimum) with exact inversion symmetry. Higher in vacuo strain energy barriers ( approximately 2.2 kcal/mol) separate the potential minima of [Fe(TPP)(Pip)(2)], consistent with the increased bulk of the secondary amine axial ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...