Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 41(7): 1404-7, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27192247

ABSTRACT

Probing the dynamics of structures in turbid media is important for understanding the internal forces that drive the time evolution of many fluid systems; the breakup of fuel injection sprays is a prime example. We demonstrate a three-pulse configuration for time-gated ballistic imaging, applied to a turbulent, steady spray allowing the acquisition of time-correlated image data. Coupled with targeted region-matching analysis, the detected image triplets are used to generate time-resolved velocity and acceleration vectors representing motion and forces involved in spray development.

2.
Opt Express ; 24(5): 4610-4621, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092289

ABSTRACT

We describe a practical arrangement for optical sectioning by means of time-gated backscatter imaging using ultrafast illumination and a CS2-based optical Kerr effect shutter. This arrangement can reveal additional information when probing transient turbid media such as fuel injection sprays or complex multiphase flows which require single-shot imaging with sufficient time resolution to freeze the dynamics of the flow.

3.
Opt Express ; 23(17): 22444-62, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26368214

ABSTRACT

This work investigates the imaging performance, in terms of contrast and resolution, of two different time-gated ballistic imaging setups commonly used in spray research. It is shown that the two setups generate similar spatial resolution in the presence of scattering media. The simpler (2f) setup, however, is less sensitive to component misalignments and time-gate induced aberrations than the commonly used (4f) system. Measurements comparing both arrangements indicated slightly higher contrast for the 2f system under the densest conditions for small scatterers. Subsequent computational modeling confirmed the observed tolerance of the 2f system to misalignment and gate effects. The best performing setup was also compared experimentally to its non-time-gated shadow-imaging equivalent, to establish when the time-gate enhances imaging performance. It is shown that the time-gated setup generates higher contrast under almost all of the scattering conditions tested, while the non-time-gated setup generates higher spatial resolution only in the lower scatterer size range at the lowest scatterer concentrations.

4.
Opt Express ; 22(13): 15778-90, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24977836

ABSTRACT

Imaging with ultrashort exposure times is generally achieved with a crossed-beam geometry. In the usual arrangement, an off-axis gating pulse induces birefringence in a medium exhibiting a strong Kerr response (commonly carbon disulfide) which is followed by a polarizer aligned to fully attenuate the on-axis imaging beam. By properly timing the gate pulse, imaging light experiences a polarization change allowing time-dependent transmission through the polarizer to form an ultrashort image. The crossed-beam system is effective in generating short gate times, however, signal transmission through the system is complicated by the crossing angle of the gate and imaging beams. This work presents a robust ultrafast time-gated imaging scheme based on a combination of type-I frequency doubling and a collinear optical arrangement in carbon disulfide. We discuss spatial effects arising from crossed-beam Kerr gating, and examine the imaging spatial resolution and transmission timing affected by collinear activation of the Kerr medium, which eliminates crossing angle spatial effects and produces gate times on the order of 1 ps. In addition, the collinear, two-color system is applied to image structure in an optical fiber and a gasoline fuel spray, in order to demonstrate image formation utilizing ballistic or refracted light, selected on the basis of its transmission time.

5.
Opt Express ; 19(3): 1866-83, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21369002

ABSTRACT

Experimental work in turbid media has shown that trans-illumination images can be significantly improved by limiting light collection to a subset of photons which are minimally distorted by scattering. The literature details numerous schemes (commonly termed ballistic imaging), most often based on time-gating and/or spatially filtering the detected light. However, due to the complex nature of the detected signal, analysis of this optical filtering process has been heretofore limited to qualitative comparisons of image results. In this article we present the implementation of a complete system model for the simulation of light propagation, including both the scattering medium and all stages of the optical train. Validation data from ballistic imaging (BI) measurements of monodisperse scatterers with diameter, d = 0.7 µm, at optical depths 5, 10, and 14, are compared with model results, showing excellent agreement. In addition, the validated model is subsequently applied to a modified time-gated optical system to probe the comparative performance of the BI system used in validation and the modified BI system. This instrument comparison examines scatterers with diameters of 0.7 and 15 µm at optical depths 10 and 14, and highlights the benefits of each system design for these specific scattering conditions. These results show that the modified optics configuration is more suitable for particles which are much larger than the incident wavelength, d >> λ, while the configuration employed in the validation system provides a better contrast for particle diameters on the order of the wavelength, d ~λ, where the scattering process exhibits a more homogeneous phase function. The insights and predictions made available by the full numerical model are important for the design of optimized imaging systems suited to specific turbid media, and make possible the quantitative understanding of both the effects of light propagation in the measurement and the performance of the complete imaging system.


Subject(s)
Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Lighting/methods , Models, Theoretical , Nephelometry and Turbidimetry/methods , Tomography, Optical Coherence/methods , Computer Simulation , Light , Scattering, Radiation
6.
Opt Lett ; 34(18): 2748-50, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19756092

ABSTRACT

We describe further development of ballistic imaging adapted for the liquid core of an atomizing spray. To fully understand spray breakup dynamics, one must measure the velocity and acceleration vectors that describe the forces active in primary breakup. This information is inaccessible to most optical diagnostics, as the signal is occluded by strong scattering in the medium. Ballistic imaging mitigates this scattering noise, resolving clean shadowgram-type images of structures within the dense spray region. We demonstrate that velocity data can be extracted from ballistic images of a spray relevant to fuel-injection applications, by implementing a simple, targeted correlation method for determining velocity from pairs of spray images. This work presents the first ballistic images of a liquid-fuel injector for scramjet combustion, and the first velocity information from ballistic images relevant to breakup in the near-field of a spray.

7.
Opt Express ; 17(16): 13792-809, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19654786

ABSTRACT

In Part I of this study [1], good agreement between experimental measurements and results from Monte Carlo simulations were obtained for the spatial intensity distribution of a laser beam propagating within a turbid environment. In this second part, the validated Monte Carlo model is used to investigate spatial and temporal effects from distinct scattering orders on image formation. The contribution of ballistic photons and the first twelve scattering orders are analyzed individually by filtering the appropriate data from simulation results. Side-scattering and forward-scattering detection geometries are investigated and compared. We demonstrate that the distribution of positions for the final scattering events is independent of particle concentration when considering a given scattering order in forward detection. From this observation, it follows that the normalized intensity distribution of each order, in both space and time, is independent of the number density of particles. As a result, the amount of transmitted information is constant for a given scattering order and is directly related to the phase function in association with the detection acceptance angle. Finally, a contrast analysis is performed in order to quantify this information at the image plane.


Subject(s)
Lasers , Models, Statistical , Computer Simulation , Light , Monte Carlo Method , Scattering, Radiation
8.
Opt Express ; 15(17): 10649-65, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-19547419

ABSTRACT

We investigate the scattering and multiple scattering of a typical laser beam (lambda = 800 nm) in the intermediate scattering regime. The turbid media used in this work are homogeneous solutions of monodisperse polystyrene spheres in distilled water. The two-dimensional distribution of light intensity is recorded experimentally, and calculated via Monte Carlo simulation for both forward and side scattering. The contribution of each scattering order to the total detected light intensity is quantified for a range of different scattering phase functions, optical depths, and detection acceptance angles. The Lorentz-Mie scattering phase function for individual particles is varied by using different sphere diameters (D = 1 and 5 mum). The optical depth of the turbid medium is varied (OD = 2, 5, and 10) by employing different concentrations of polystyrene spheres. Detection angles of theta(a) = 1.5 degrees and 8.5 degrees are considered. A novel approach which realistically models the experimental laser source is employed in this paper, and very good agreement between the experimental and simulated results is demonstrated. The data presented here can be of use to validate any other modern Monte Carlo models which generate spatially resolved light intensity distributions. Finally, an effective correction procedure to the Beer-Lambert law is proposed based on the Monte Carlo calculation of the ballistic photon contribution to the total detected light intensity.

9.
Opt Lett ; 31(7): 906-8, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16599207

ABSTRACT

We describe adaptation of ballistic imaging for the liquid core of an atomizing spray. To describe unambiguously the forces that act to break apart the liquid core in a spray, one must directly measure the force vectors themselves. It would be invaluable, therefore, to obtain velocity and acceleration data at the liquid-gas interface. We employ double-image ballistic imaging to extract velocity information through the application of image analysis algorithms. This method is shown to be effective for liquid phase droplet features within the resolution limit of the imaging system. In light of these results, it is clear that a three- or four-image implementation of this technique would allow the determination of acceleration, and by extension, information about the forces active in spray breakup.

SELECTION OF CITATIONS
SEARCH DETAIL
...