Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 9(2)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012829

ABSTRACT

Twenty-seven Lactobacillus pentosus strains, and the undefined starter for table olives from which they were isolated, were characterised for their technological properties: tolerance to low temperature, high salt concentration, alkaline pH, and olive leaf extract; acidifying ability; oleuropein degradation; hydrogen peroxide and lactic acid production. Two strains with appropriate technological properties were selected. Then, table olive fermentation in vats, with the original starter, the selected strains, and without starter (spontaneous fermentation) were compared. Starters affected some texture profile parameters. The undefined culture resulted in the most effective Enterobacteriaceae reduction, acidification and olive debittering, while the selected strains batch showed the lowest antioxidant activity. Our results show that the best candidate strains cannot guarantee better fermentation performance than the undefined biodiverse mix from which they originate.

2.
Food Chem Toxicol ; 90: 171-80, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26911552

ABSTRACT

The phenolic fraction of extra virgin olive oil (EVOO) concentrates before absorption in the intestinal lumen, where it may contribute to the modulation of enterocytes response to oxidative and inflammatory stimuli. We evaluated the ability of two monovarietal EVOOs phenolic extracts, Bosana and Nera di Gonnos/Tonda di Cagliari, typical and widespread varieties in Sardinia (Italy), to counteract in enterocytes like Caco-2 cells the pro-oxidant action of oxidized lipids, tert-butyl hydroperoxide (TBH) or a mixture of oxysterols of dietary origin. We confirmed that TBH treatment causes a significant increase of ROS production, GSH depletion, increase of MDA, fatty acids hydroperoxides and 7-ketocholesterol, and showed first evidence of oxidative imbalance and cell damage due to oxysterols exposure. Preincubation of cells with the phenolic extracts significantly attenuated oxidative modifications. Bosana extract showed the highest concentration of total phenols, mainly hydroxytyrosol and tyrosol, and was the most active in presence of TBH, where the free radical scavenging activity of these simple phenols seems to be a determining factor. The two extracts were equally effective, in spite of the different composition, in presence of oxysterols, where ROS production probably occurs according to different and more complex mechanisms.


Subject(s)
Lipids/adverse effects , Olive Oil/chemistry , Phenols/chemistry , Plant Extracts/pharmacology , Caco-2 Cells , Dietary Fats , Humans , Lipids/chemistry , Oxidation-Reduction , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...