Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Stem Cells Regen Med ; 16(2): 34-43, 2020.
Article in English | MEDLINE | ID: mdl-33414579

ABSTRACT

Induced pluripotent stem cells (iPSCs) hold a great potential for therapeutic regenerative medicine. The aim of this study was to generate induced pluripotent stem cells from goat embryonic cardiac tissue derived fibroblasts. The isolated cardiac fibroblasts from the cardiac tissue of goat embryos were positive for alfa smooth muscle actin, vimentin and discoidin domain receptor2. From these cells, we generated transgene free iPSCs using piggyBac transposons / transposase using five transcription factors (Oct4, Sox2, Klf, Myc and Lin 28). The generated iPSCs were SSEA1, SSEA4 and Oct4 positive. They were cultured on neofeeders using 20% Serum replacement - IMDM with bFGF. They could form cystic and compact embryoid bodies that showed differentiated ectodermal and mesodermal like cells when cultured using 20% FBS-IMDM without bFGF. The iPSCs, generated in the frame of this approach were produced without the use of integrating virus and the reprogramming transgenes were removed at the end of the process. Though there were limitations in the approach used, a substantial sign of reprogramming was obtained.

2.
Peptides ; 52: 90-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24333973

ABSTRACT

Recent studies have revealed that ghrelin may be an antioxidant and anti-inflammatory agent in many organs, however its role in chronic liver injury (CLI) remains unclear. The role of nitric oxide (NO) in CLI is controversial as evidence suggests that NO is either a primary mediator of liver cell injury or exhibits a protective effect against injurious stimuli. Recent evidence demonstrated that the therapeutic potential for ghrelin was through eNOS activation and increase in NO production. However, its role on NO production in the liver has not been previously investigated. The aim of this study was to investigate the role of ghrelin in treatment of CLI, and whether this action is mediated through NO. Forty male rats were divided into four groups: Group I: Control; Group II: chronic liver injury (CLI); Group III: CLI+Ghrelin; and Group IV: CLI+Ghrelin+l-NAME. Liver enzymes and tumor necrosis factor alpha (TNF-α), were measured to assess hepatocellular injury. Liver tissue collagen content, malondialdehyde (MDA), gene expression of Bax, Bcl-2, and eNOS were assessed to determine the mechanism of ghrelin action. Results showed that ghrelin decreased serum liver enzymes and TNF-α levels. Ghrelin also reduced liver tissue collagen, MDA, and Bax gene expression, and increased Bcl-2 and eNOS gene expression. The effects on TNF-α, collagen, MDA, Bax, and eNOS were partially reversed in Group IV, suggesting that ghrelin's action could be through modulation of NO levels. Therefore, ghrelin's hepatoprotective effect is partially mediated by NO release.


Subject(s)
Liver Cirrhosis/metabolism , Liver/injuries , Liver/metabolism , Nitric Oxide/metabolism , Animals , Chronic Disease , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Ghrelin/pharmacology , Liver/pathology , Liver Cirrhosis/pathology , Male , Malondialdehyde/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/biosynthesis , Rats , bcl-2-Associated X Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...