Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Stats (Basel) ; 6(2): 526-538, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37920864

ABSTRACT

The area under the true ROC curve (AUC) is routinely used to determine how strongly a given model discriminates between the levels of a binary outcome. Standard inference with the AUC requires that outcomes be independent of each other. To overcome this limitation, a method was developed for the estimation of the variance of the AUC in the setting of two-level hierarchical data using probit-transformed prediction scores generated from generalized estimating equation models, thereby allowing for the application of inferential methods. This manuscript presents an extension of this approach so that inference for the AUC may be performed in a three-level hierarchical data setting (e.g., eyes nested within persons and persons nested within families). A method that accounts for the effect of tied prediction scores on inference is also described. The performance of 95% confidence intervals around the AUC was assessed through the simulation of three-level clustered data in multiple settings, including ones with tied data and variable cluster sizes. Across all settings, the actual 95% confidence interval coverage varied from 0.943 to 0.958, and the ratio of the theoretical variance to the empirical variance of the AUC varied from 0.920 to 1.013. The results are better than those from existing methods. Two examples of applying the proposed methodology are presented.

2.
Am J Ophthalmol ; 255: 74-86, 2023 11.
Article in English | MEDLINE | ID: mdl-37437830

ABSTRACT

PURPOSE: To determine if a family history of age-related macular degeneration (AMD) and genetic variants identify eyes at higher risk for progression to advanced AMD (AAMD), after controlling for baseline demographics, behavioral factors, and macular status. DESIGN: Prospective, longitudinal cohort study. METHODS: Eyes were classified using the Age-Related Eye Disease Study severity scale. Non-genetic and genetic predictors for progression to AAMD, geographic atrophy, and neovascular disease were evaluated. Cox proportional hazards models using the eye as the unit of analysis were used to calculate hazard ratios (HRs), accounting for correlated data. Discrimination between progressing and non-progressing eyes was assessed using C-statistics and net reclassification improvement (NRI). RESULTS: Among 4910 eyes, 863 progressed to AAMD over 12 years. Baseline AMD severity scale and status of the fellow eye were important predictors; genes provided additional discrimination. A family history of AMD also independently predicted progression after accounting for genetic and other covariates: 1 family member versus none (HR 1.21 [95% confidence interval {CI} 1.02-1.43]; P = 0.03); ≥2 family members versus none (HR 1.55 [95% CI 1.26-1.90]; P < 0.001). A composite risk score calculated using ß estimates of both non-genetic and significant genetic factors predicted progression to AAMD (HR 5.57; 90th vs 10th percentile; area under the receiver operating characteristic curve [AUC] = 0.92), providing superior fit compared with other models, including one with only ocular variables (NRI = 0.34; P < 0.001; AUC = 0.87, ΔAUC 0.05 ± 0.005; P < 0.001). CONCLUSION: Genetic variants and family history provided additional discrimination for predicting progression to AAMD, after accounting for baseline macular status and other covariates.


Subject(s)
Macular Degeneration , Humans , Longitudinal Studies , Prospective Studies , Disease Progression , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Risk Factors , Life Style , Demography
3.
Ophthalmol Sci ; 3(2): 100265, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36909148

ABSTRACT

Purpose: To evaluate associations between rare dysfunctional complement factor I (CFI) genetic variant status and progression to advanced age-related macular degeneration (AAMD), geographic atrophy (GA), and neovascular disease (NV). Design: Prospective, longitudinal study. Participants: Patients aged 55 to 80 years at baseline identifying as White with non-AAMD in 1 or both eyes at baseline were included. Follow-up grades were assigned as early, intermediate, or AAMD (GA or NV). CFI variants were categorized using genotyping and sequencing platforms. Methods: Analyses were performed using the Seddon Longitudinal Cohort Study (N = 2116 subjects, 3901 eyes, and mean follow-up of 8.3 years) and the Age-Related Eye Disease Study (N = 2837 subjects, 5200 eyes, and mean follow-up of 9.2 years). CFI rare variants associated with low serum factor I (FI) protein levels and decreased FI function (type 1), other AMD genetic variants, and demographic, behavioral, and ocular factors were evaluated. Generalized estimating equations methods were used to assess the association between CFI rare variants and progression, independent of other genetic variants and covariates. Main Outcome Measures: Progression to AAMD, GA, or NV. Results: In the prospective cohort of 4953 subjects (9101 eyes with non-AAMD at baseline), 1% were type 1 rare CFI carriers. Over 12 years, progression to AAMD was 44% for carriers and 20% for noncarriers (P < 0.001), 30% of carriers versus 10% of noncarriers progressed to GA (P < 0.001), and 18% of carriers compared with 11% of noncarriers progressed to NV (P = 0.049). CFI carriers were more likely to have a family history of AMD (P for trend = 0.035) and a higher baseline AMD grade (P < 0.001). After adjusting for all covariates, CFI carrier status was associated with progression to GA (odds ratio [OR] = 1.91; 95% confidence interval [CI] = 1.03, 3.52) but not NV (OR = 0.96). Higher body mass index was associated with progression among CFI carriers (body mass index ≥ 25 vs. < 25; OR = 5.8; 95% CI 1.5, 22.3) but not for noncarriers (OR = 1.1; 95% CI = 0.9, 1.3), with P_interaction = 0.011. Conclusions: Results suggest that carriers of rare dysfunctional type 1 CFI variants are at higher risk for progression to AAMD with GA. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

4.
Ophthalmol Ther ; 12(2): 755-788, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36808601

ABSTRACT

INTRODUCTION: Exposure to blue light has seriously increased in our environment since the arrival of light emitting diodes (LEDs) and, in recent years, the proliferation of digital devices rich in blue light. This raises some questions about its potential deleterious effects on eye health. The aim of this narrative review is to provide an update on the ocular effects of blue light and to discuss the efficiency of methods of protection and prevention against potential blue light-induced ocular injury. METHODS: The search of relevant English articles was conducted in PubMed, Medline, and Google Scholar databases until December 2022. RESULTS: Blue light exposure provokes photochemical reactions in most eye tissues, in particular the cornea, the lens, and the retina. In vitro and in vivo studies have shown that certain exposures to blue light (depending on the wavelength or intensity) can cause temporary or permanent damage to some structures of the eye, especially the retina. However, currently, there is no evidence that screen use and LEDs in normal use are deleterious to the human retina. Regarding protection, there is currently no evidence of a beneficial effect of blue blocking lenses for the prevention of eye diseases, in particular age-related macular degeneration (AMD). In humans, macular pigments (composed of lutein and zeaxanthin) represent a natural protection by filtering blue light, and can be increased through increased intake from foods or food supplements. These nutrients are associated with lower risk for AMD and cataract. Antioxidants such as vitamins C, E, or zinc might also contribute to the prevention of photochemical ocular damage by preventing oxidative stress. CONCLUSION: Currently, there is no evidence that LEDs in normal use at domestic intensity levels or in screen devices are retinotoxic to the human eye. However, the potential toxicity of long-term cumulative exposure and the dose-response effect are currently unknown.

5.
Comput Biol Med ; 154: 106512, 2023 03.
Article in English | MEDLINE | ID: mdl-36701964

ABSTRACT

BACKGROUND: Accurate retinal layer segmentation in optical coherence tomography (OCT) images is crucial for quantitatively analyzing age-related macular degeneration (AMD) and monitoring its progression. However, previous retinal segmentation models depend on experienced experts and manually annotating retinal layers is time-consuming. On the other hand, accuracy of AMD diagnosis is directly related to the segmentation model's performance. To address these issues, we aimed to improve AMD detection using optimized retinal layer segmentation and deep ensemble learning. METHOD: We integrated a graph-cut algorithm with a cubic spline to automatically annotate 11 retinal boundaries. The refined images were fed into a deep ensemble mechanism that combined a Bagged Tree and end-to-end deep learning classifiers. We tested the developed deep ensemble model on internal and external datasets. RESULTS: The total error rates for our segmentation model using the boundary refinement approach was significantly lower than OCT Explorer segmentations (1.7% vs. 7.8%, p-value = 0.03). We utilized the refinement approach to quantify 169 imaging features using Zeiss SD-OCT volume scans. The presence of drusen and thickness of total retina, neurosensory retina, and ellipsoid zone to inner-outer segment (EZ-ISOS) thickness had higher contributions to AMD classification compared to other features. The developed ensemble learning model obtained a higher diagnostic accuracy in a shorter time compared with two human graders. The area under the curve (AUC) for normal vs. early AMD was 99.4%. CONCLUSION: Testing results showed that the developed framework is repeatable and effective as a potentially valuable tool in retinal imaging research.


Subject(s)
Macular Degeneration , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Macular Degeneration/diagnostic imaging , Algorithms , Machine Learning
6.
Ophthalmol Sci ; 3(1): 100206, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36275200

ABSTRACT

Purpose: To select individuals and families with a low genetic burden for age-related macular degeneration (AMD), to inform the clinical diagnosis of macular disorders, and to find novel genetic variants associated with maculopathies. Design: Genetic association study based on targeted and whole-exome sequencing. Participants: A total of 758 subjects (481 individuals with maculopathy and 277 controls), including 316 individuals in 72 families. Methods: We focused on 150 genes involved in the complement, coagulation, and inflammatory pathways. Single-variant tests were performed on 7755 variants shared among ≥ 5 subjects using logistic regression. Gene-based tests were used to evaluate aggregate effects from rare and low-frequency variants (at minor allele frequency [MAF] ≤ 5% or ≤ 1%) in a gene using burden tests. For families whose affected members had a low burden of genetic risk based on known common and rare variants related to AMD, we searched for rare variants (MAF < 0.001) whose risk alleles occurred in ≥ 80% of affected individuals but not in controls. Immunohistochemistry was performed to determine the protein expression of a novel gene (coagulation factor II thrombin receptor-like 2 [F2RL2]) in retinal tissues. Main Outcome Measures: Genotypes and phenotypes of macular degeneration. Results: We confirmed the association of a synonymous variant in complement factor H (Ala473, rs2274700, proxy to intronic rs1410996, r 2  = 1) with maculopathy (odds ratio, 0.64; P = 4.5 × 10-4). Higher AMD polygenic risk scores (PRSs) were associated with intermediate and advanced AMD. Among families with low PRSs and no known rare variants for maculopathy, we identified 2 novel, highly penetrant missense rare variants in ADAM15, A disintegrin and metalloprotease, metallopeptidase domain 15 (p.Arg288Cys) and F2RL2 (p.Leu289Arg). Immunohistochemistry analyses revealed F2RL2 protein expression in cone photoreceptor outer segments and Müller glia cells of human and pig retinas. Coagulation factor II thrombin receptor-like 2 expression appeared increased in fibrotic areas in advanced AMD samples with neovascularization, suggesting that F2RL2 may play a role in the progression to advanced macular disease. Conclusions: New missense rare variants in the genes ADAM15 and F2RL2 were associated with maculopathies. Results suggest that novel genes related to the coagulation and immune pathways may be involved in the pathogenesis of macular diseases.

7.
Front Genet ; 14: 1274743, 2023.
Article in English | MEDLINE | ID: mdl-38348408

ABSTRACT

Introduction: Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly. One-third of the genetic contribution to this disease remains unexplained. Methods: We analyzed targeted sequencing data from two independent cohorts (4,245 cases, 1,668 controls) which included genomic regions of known AMD loci in 49 genes. Results: At a false discovery rate of <0.01, we identified 11 low-frequency AMD variants (minor allele frequency <0.05). Two of those variants were present in the complement C4A gene, including the replacement of the residues that contribute to the Rodgers-1/Chido-1 blood group antigens: [VDLL1207-1210ADLR (V1207A)] with discovery odds ratio (OR) = 1.7 (p = 3.2 × 10-5) which was replicated in the UK Biobank dataset (3,294 cases, 200,086 controls, OR = 1.52, p = 0.037). A novel variant associated with reduced risk for AMD in our discovery cohort was P1120T, one of the four C4A-isotypic residues. Gene-based tests yielded aggregate effects of nonsynonymous variants in 10 genes including C4A, which were associated with increased risk of AMD. In human eye tissues, immunostaining demonstrated C4A protein accumulation in and around endothelial cells of retinal and choroidal vasculature, and total C4 in soft drusen. Conclusion: Our results indicate that C4A protein in the complement activation pathways may play a role in the pathogenesis of AMD.

8.
Transl Vis Sci Technol ; 11(6): 23, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35749108

ABSTRACT

Purpose: The objectives of this study were the creation and validation of a screening tool for age-related macular degeneration (AMD) for routine assessment by primary care physicians, ophthalmologists, other healthcare professionals, and the general population. Methods: A simple, self-administered questionnaire (Simplified Théa AMD Risk-Assessment Scale [STARS] version 4.0) which included well-established risk factors for AMD, such as family history, smoking, and dietary factors, was administered to patients during ophthalmology visits. A fundus examination was performed to determine presence of large soft drusen, pigmentary abnormalities, or late AMD. Based on data from the questionnaire and the clinical examination, predictive models were developed to estimate probability of the Age-Related Eye Disease Study (AREDS) score (categorized as low risk/high risk). The models were evaluated by area under the receiving operating characteristic curve analysis. Results: A total of 3854 subjects completed the questionnaire and underwent a fundus examination. Early/intermediate and late AMD were detected in 15.9% and 23.8% of the patients, respectively. A predictive model was developed with training, validation, and test datasets. The model in the test set had an area under the curve of 0.745 (95% confidence interval [CI] = 0.705-0.784), a positive predictive value of 0.500 (95% CI = 0.449-0.557), and a negative predictive value of 0.810 (95% CI = 0.770-0.844). Conclusions: The STARS questionnaire version 4.0 and the model identify patients at high risk of developing late AMD. Translational Relevance: The screening instrument described could be useful to evaluate the risk of late AMD in patients >55 years without having an eye examination, which could lead to more timely referrals and encourage lifestyle changes.


Subject(s)
Macular Degeneration , Retinal Drusen , Diagnostic Self Evaluation , Follow-Up Studies , Humans , Macular Degeneration/diagnosis , Macular Degeneration/epidemiology , Retinal Drusen/diagnosis , Risk Factors
9.
Hum Mol Genet ; 31(21): 3683-3693, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35531992

ABSTRACT

Factor I (FI) is a serine protease inhibitor of the complement system. Heterozygous rare genetic variants in complement factor I (CFI) are associated with advanced age-related macular degeneration (AMD). The clinical impact of these variants is unknown since a majority have not been functionally characterized and are classified as 'variants of uncertain significance' (VUS). This study assessed the functional significance of VUS in CFI. Our previous cross-sectional study using a serum-based assay demonstrated that CFI variants in advanced AMD can be categorized into three types. Type 1 variants cause a quantitative deficiency of FI. Type 2 variants demonstrate a qualitative deficiency. However, Type 3 variants consist of VUS that are less dysfunctional than Types 1 and 2 but are not as biologically active as wild type (WT). In this study, we employed site-directed mutagenesis followed by expression of the recombinant variant and a comprehensive set of functional assays to characterize nine Type 3 variants that were identified in 37 individuals. Our studies establish that the expression of the recombinant protein compared with WT is reduced for R202I, Q217H, S221Y and G263V. Further, G362A and N536K, albeit expressed normally, have significantly less cofactor activity. These results led to re-categorization of CFI variants R202I, Q217H, S221Y and G263V as Type 1 variants and to reclassification of N536K and G362A as Type 2. The variants K441R, Q462H and I492L showed no functional defect and remained as Type 3. This study highlights the utility of an in-depth biochemical analysis in defining the pathologic and clinical implications of complement variants underlying AMD.


Subject(s)
Complement Factor I , Macular Degeneration , Humans , Complement Factor I/genetics , Fibrinogen/genetics , Genetic Predisposition to Disease , Heterozygote , Macular Degeneration/pathology , Polymorphism, Single Nucleotide
10.
J Clin Med ; 10(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34830713

ABSTRACT

BACKGROUND: Early identification of AMD can lead to prompt and more effective treatment, better outcomes, and better final visual acuity; several risk scores have been devised to determine the individual level of risk for developing AMD. Herein, the Delphi method was used to provide recommendations for daily practice regarding preventive measures and follow-up required for subjects at low, moderate, and high risk of AMD evaluated with the Simplified Test AMD Risk-assessment Scale (STARS®) questionnaire. METHODS: A steering committee of three experts drafted and refined 25 statements on the approach to be recommended in different clinical situations [general recommendations (n = 2), use of evaluation tools (n = 4), general lifestyle advice (n = 3), and AREDS-based nutritional supplementation (n = 5)] with the help of a group of international experts, all co-authors of this paper. Thirty retinal specialists from Europe and the US were chosen based on relevant publications, clinical expertise, and experience in AMD, who then provided their level of agreement with the statements. Statements for which consensus was not reached were modified and voted upon again. RESULTS: In the first round of voting, consensus was reached for 24 statements. After modification, consensus was then reached for the remaining statement. CONCLUSION: An interprofessional guideline to support preventive measures in patients at risk of AMD based on STARS® scoring has been developed to aid clinicians in daily practice, which will help to optimize preventive care of patients at risk of AMD.

11.
J Invest Dermatol ; 141(12): 2849-2857.e3, 2021 12.
Article in English | MEDLINE | ID: mdl-34153328

ABSTRACT

Patients with hereditary retinoblastoma are at risk for developing cutaneous melanoma, but little is known about the role of sun exposure or other factors, and the incidence of nonmelanoma skin cancer (NMSC) is poorly understood. We investigated the incidence of melanoma and NMSC in a cohort of 1,851 White, long-term retinoblastoma survivors (1,020 hereditary and 831 nonhereditary) diagnosed during 1914‒2006. During follow-up through 2016, 33 hereditary and 7 nonhereditary survivors developed melanoma, and 26 hereditary and 9 nonhereditary survivors developed NMSC. Most NMSCs were on the head/neck, whereas melanomas were more broadly distributed with patterns similar to melanoma-prone families. For both outcomes, the median age at diagnosis was ~20 years younger among hereditary survivors than among nonhereditary survivors. At 50 years after retinoblastoma diagnosis, the cumulative incidence in hereditary survivors was 4.5% for melanoma and 3.7% for NMSC; for nonhereditary survivors, it was 0.7% and 1.5%, respectively. Sun sensitivity and phenotypic characteristics generally did not vary by skin cancer status. Hereditary retinoblastoma survivors have an increased risk for melanoma and NMSC that occurred earlier than that observed among nonhereditary survivors, likely reflecting genetic factors. These findings among White retinoblastoma survivors support consensus-based recommendations for skin cancer screening and sun protection starting at young ages and continuing long term.


Subject(s)
Cancer Survivors , Retinal Neoplasms/complications , Retinoblastoma/complications , Skin Neoplasms/etiology , Adolescent , Adult , Aged , Female , Humans , Male , Melanoma/etiology , Middle Aged , Risk Factors , Young Adult
12.
Cancers (Basel) ; 13(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917779

ABSTRACT

Hereditary retinoblastoma survivors have substantially increased risk of subsequent malignant neoplasms (SMNs). The risk of benign neoplasms, a substantial cause of morbidity, is unclear. We calculated the cumulative incidence of developing benign tumors at 60 years following retinoblastoma diagnosis among 1128 hereditary (i.e., bilateral retinoblastoma or unilateral with family history, mutation testing was not available) and 924 nonhereditary retinoblastoma survivors diagnosed during 1914-2006 at two US medical centers with follow-up through 2016. Using Cox proportional hazards regression, we compared benign tumor risk by hereditary status and evaluated the association between benign tumors and SMNs. There were 100 benign tumors among 73 hereditary survivors (cumulative incidence = 17.6%; 95% confidence interval [CI] = 12.9-22.8%) and 22 benign tumors among 16 nonhereditary survivors (cumulative incidence = 3.9%; 95%CI = 2.2-6.4%), corresponding to 4.9-fold (95%CI = 2.8-8.4) increased risk for hereditary survivors. The cumulative incidence after hereditary retinoblastoma was highest for lipoma among males (14.0%; 95%CI = 7.7-22.1%) and leiomyoma among females (8.9%; 95%CI = 5.2-13.8%). Among hereditary survivors, having a prior SMN was associated with 3.5-fold (95%CI = 2.0-6.1) increased risk of developing a benign tumor; the reciprocal risk for developing an SMN after a benign tumor was 1.8 (95%CI = 1.1-2.9). These large-scale, long-term data demonstrate an increased risk for benign tumors after hereditary versus nonhereditary retinoblastoma. If confirmed, the association between benign tumors and SMNs among hereditary patients may have implications for long-term surveillance.

13.
Br J Cancer ; 124(7): 1312-1319, 2021 03.
Article in English | MEDLINE | ID: mdl-33473166

ABSTRACT

BACKGROUND: Increased sarcoma and melanoma risks after hereditary retinoblastoma are well established, whereas less is known about epithelial subsequent malignant neoplasms (SMNs) and risks for multiple (≥2) SMNs. METHODS: Leveraging long-term follow-up and detailed histologic information, we quantified incident SMN risk among 1128 hereditary and 924 nonhereditary retinoblastoma survivors (diagnosed 1914-2006; follow-up through 2016). Standardised incidence ratios (SIRs) compared cancer risk after retinoblastoma relative to the general population. We estimated cumulative incidence accounting for competing risk of death. RESULTS: Hereditary survivors had statistically significantly increased SMN risk (N = 239; SIR = 11.9; 95% confidence interval [CI] 10.4-13.5), with SIRs >80-fold for sarcomas, nasal cavity tumours and pineoblastoma. Significantly increased risks were also observed for melanoma and central nervous system, oral cavity and breast SMNs (SIRs = 3.1-17), but not the uterus, kidney, lung, bladder, pancreas or other types. Cumulative incidence 50 years following hereditary retinoblastoma was 33.1% (95% CI 29.0-37.2) for a first SMN and 6.0% (95% CI 3.8-8.2) for a second SMN. SMN risk was not increased after nonhereditary retinoblastoma (N = 25; SIR = 0.8; 95% CI 0.5-1.2). CONCLUSION: Beyond the established sarcoma and melanoma risks after hereditary retinoblastoma, we demonstrate increased risk for a more limited number of epithelial malignancies than previously suggested. Cumulative incidence estimates emphasise long-term SMN burden after hereditary retinoblastoma.


Subject(s)
Cancer Survivors/statistics & numerical data , Genetic Predisposition to Disease , Neoplasms, Second Primary/epidemiology , Retinal Neoplasms/complications , Retinoblastoma/complications , Adult , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Neoplasms, Second Primary/etiology , Neoplasms, Second Primary/pathology , Prognosis , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Survival Rate , United States
14.
Invest Ophthalmol Vis Sci ; 61(14): 32, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33369641

ABSTRACT

Purpose: To determine behavioral and genetic factors associated with incidence and age of progression to advanced age-related macular degeneration (AMD), geographic atrophy (GA), and neovascular disease (NV), and to quantify these effects. Methods: Longitudinal analyses were conducted among 5421 eyes with nonadvanced AMD at baseline in 2976 participants in the Age-Related Eye Disease Study (mean age of 68.8 (±5.0), 56.1% female). Progression was confirmed based on two consecutive visits on the AMD severity scale. Separate analyses for progression and age of progression were performed. All analyses adjusted for correlation between eyes, demographic and behavioral covariates, baseline severity scale, and genetic variants. Results: A higher genetic risk score (GRS) including eight genetic variants was associated with a higher rate of progression to advanced AMD within each baseline severity scale, especially for the highest risk intermediate level AMD category, and smoking further increased this risk. When assessing age when progression to advanced disease occurred, smoking reduced age of onset by 3.9 years (P < 0.001), and higher body mass index (BMI) led to earlier onset by 1.7 years (P = 0.003), with similar results for GA and NV. Genetic variants associated with earlier age of progression were CFH R1201C (4.3 years), C3 K155Q (2.15 years), and ARMS2/HTRA1 (0.8 years per allele). Conclusions: Rare variants in the complement pathway and a common risk allele in ARMS2/HTRA1, smoking, and higher BMI can lead to as much as 11.5 additional years of disease and treatment burden. Closer adherence to healthy lifestyles could reduce years of visual impairment.


Subject(s)
Macular Degeneration/genetics , Smoking/adverse effects , Age of Onset , Aged , Body Mass Index , Disease Progression , Female , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Incidence , Longitudinal Studies , Macular Degeneration/epidemiology , Macular Degeneration/etiology , Macular Degeneration/pathology , Male , Proteins/genetics , Risk Factors , Severity of Illness Index
15.
Asia Pac J Ophthalmol (Phila) ; 10(1): 114-120, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33290288

ABSTRACT

ABSTRACT: Many of the risk factors for developing severe coronavirus disease 2019 (COVID-19) are also risk factors for eye diseases such as age-related macular degeneration (AMD). During the past decades, macrophages and the complement pathway (as a part of the innate immune system) have been identified as important contributors to the development of AMD, and we suggest that these mechanisms are of similar importance for the clinical course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Based on the experience with AMD, we discuss how behavioral factors such as diet, smoking and higher body mass index, as well as genetic determinants such as the complement and immune pathway genes may lead to the overactive inflammatory phenotypes seen in some patients with COVID-19, and may in part explain the heterogeneity of disease manifestations and outcomes. Based on this experience, we discuss potential genetic research projects and elaborate on preventive and treatment approaches related to COVID-19.


Subject(s)
COVID-19/immunology , Complement System Proteins/physiology , Inflammation/immunology , Macrophages/physiology , Macular Degeneration/immunology , SARS-CoV-2 , Aging/physiology , Animals , COVID-19/physiopathology , Health Risk Behaviors , Humans , Immunity, Innate , Macular Degeneration/physiopathology , Risk Factors
16.
Transl Vis Sci Technol ; 9(9): 37, 2020 08.
Article in English | MEDLINE | ID: mdl-32908800

ABSTRACT

Purpose: Factor I (FI) is a serine protease regulator of the complement system. Genetic variants in CFI are associated with advanced age-related macular degeneration (AAMD). However, the clinical and functional impact of these variants is unknown. This study assessed the functional significance of rare CFI variants using a serum-based assay. Methods: Carriers of rare variants with (n = 78) and without AAMD (n = 28), and noncarriers with (n = 49) and without AMD (n = 44) were evaluated. Function of FI was determined by measuring the proteolytic cleavage of C3b to iC3b, using the cofactor protein, Factor H. Results: CFI variants were categorized into three groups based on antigenic and functional assessments. Type 1 variants (n = 18) in 35 patients with AAMD demonstrated low serum FI levels and a corresponding decrease in FI function. Type 2 variants (n = 6) in 7 individuals demonstrated normal serum FI antigenic levels but reduced degradation of C3b to iC3b. Type 3 variants (n = 15) in 64 individuals demonstrated normal antigenic levels and degradation of C3b to iC3b. However, iC3b generation was low when measured per unit of FI. Thus most rare CFI variants demonstrate either low antigenic levels (type 1) or normal levels but reduced function (types 2 or 3). Conclusions: Results provide for the first time a comprehensive functional assessment in serum of CFI rare genetic variants and further establish FI's key role in the pathogenesis of AAMD. Translational Relevance: Stratifying patients in the clinic with a rare CFI variant will facilitate screening and targeting patients most likely to benefit from complement therapies.


Subject(s)
Complement Factor I , Macular Degeneration , Complement C3b , Complement Factor I/genetics , Complement System Proteins , Heterozygote , Humans , Macular Degeneration/genetics
17.
Invest Ophthalmol Vis Sci ; 61(5): 17, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32407518

ABSTRACT

Purpose: To investigate the relationship of growth in drusen size with genetic susceptibility and adherence to the alternate Mediterranean diet. Methods: Participants in this analysis had complete ocular, genetic, and dietary data with mean follow-up time of 10.2 years in the Age-Related Eye Disease database. Maximal drusen size was graded on an ordinal scale and two-step progression was determined. A genetic risk score using variants associated with advanced AMD and derived from a stepwise regression model yielded 11 variants in 8 genes. Adherence to the alternate Mediterranean diet was assessed using a nine-component score based on intake of vegetables, fruits, legumes, whole cereals, fish, meat, nuts, alcohol, and monounsaturated-to-saturated fatty acids ratio. Multivariate Cox proportional hazards models were used. Results: Among 3023 eligible eyes, 19% had drusen growth. In the stepwise selection, common and rare risk alleles for CFH Y402H, CFH rs1410996, CFH R1210C, C3 R102G, C3 K155Q, and ARMS2/HTRA1, as well as VEGF-A, TIMP3, NPLOC4, and HSPH1 variants were significantly associated with 2-step progression in drusen size, and the C2 E318D protective allele conferred decreased risk, adjusting for other covariates. A higher genetic risk score conferred a higher risk (hazard ratio per 1-unit increase, 2.68; 95% confidence interval, 2.23-3.23; P < 0.001), and a medium/high adherence to alternate Mediterranean diet score (4-9) tended to lower risk (hazard ratio, 0.83; 95% confidence interval, 0.68-0.99; P = 0.049), adjusting for all covariates. Conclusions: Genetic susceptibility was independently related to drusen growth. A Mediterranean-style diet with healthful nutrient-rich foods (fruits, vegetables, legumes and fish), may reduce enlargement of drusen, the hallmark of AMD.


Subject(s)
Diet, Mediterranean , Disease Progression , Genetic Predisposition to Disease , Macular Degeneration/diet therapy , Macular Degeneration/genetics , Retinal Drusen/pathology , Aged , Aged, 80 and over , Alleles , Complement C3/genetics , Complement Factor H/genetics , Female , Follow-Up Studies , HSP110 Heat-Shock Proteins/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Male , Middle Aged , Nuclear Proteins/genetics , Photography , Proteins/genetics , Tissue Inhibitor of Metalloproteinase-3/genetics , Vascular Endothelial Growth Factor A/genetics
18.
Exp Eye Res ; 192: 107939, 2020 03.
Article in English | MEDLINE | ID: mdl-31987759

ABSTRACT

Loss of choriocapillaris (CC) in advanced age-related macular degeneration (AMD) is well documented but changes in early AMD have not been quantified. Postmortem eyes from donors with clinically documented early AMD were examined in choroidal whole mounts to determine the area, pattern, and severity of CC loss. Choroids from postmortem human eyes without AMD (n = 7; mean age = 86.1) and from eyes with a Grade 2 clinical classification of early AMD (n = 7; mean age = 87) were immunolabeled with Ulex europaeus agglutinin (UEA) lectin-FITC to stain blood vessels. Whole mounts were imaged using confocal microscopy and image analysis was performed to determine the area of vascular changes and density of vasculature (percent vascular area, %VA). All areas evaluated had a complete RPE monolayer upon gross examination. In age-matched control eyes, the CC had broad lumens and a homogenous pattern of freely interconnecting capillaries. The mean %VA ± standard deviation in submacula of control subjects was 78.1 ± 3.25%. In eyes with early AMD, there was a significant decrease in mean %VA to 60.1 ± 10.4% (p < 0.0001). The paramacular %VA was not significantly different in eyes with or without AMD. The area of submacular choroid affected by CC dropout was 0.04 ± 0.09 mm2 in control eyes. In eyes with early AMD, the mean area affected by CC dropout was significantly increased (10.4 ± 6.1 mm2; p < 0.001). In some cases, incipient neovascular buds were observed at the border of regions with CC dropout in early AMD choroids. In conclusion, UEA lectin-labeled choroidal whole mounts from donors with clinically documented early AMD has provided a unique opportunity to examine regional changes in vascular pathology associated with choriocapillaris. The study demonstrated attenuation of submacular CC in early AMD subjects but no vascular pathology was observed outside the submacular region. While the affected area in some eyes was quite extensive histologically, these changes may not be detectable clinically using standard in vivo imaging.


Subject(s)
Choroid/blood supply , Choroidal Neovascularization/pathology , Ciliary Arteries/pathology , Macular Degeneration/pathology , Aged , Aged, 80 and over , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Humans , Immunohistochemistry , Male , Microscopy, Confocal , Plant Lectins/metabolism , Retinal Drusen/pathology , Staining and Labeling , Tissue Donors , Visual Acuity/physiology
19.
J Clin Oncol ; 37(35): 3436-3445, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31622129

ABSTRACT

PURPOSE: Survivors of hereditary retinoblastoma have excellent survival but substantially increased risks of subsequent bone and soft-tissue sarcomas, particularly after radiotherapy. Comprehensive investigation of sarcoma risk patterns would inform clinical surveillance for survivors. PATIENTS AND METHODS: In a cohort of 952 irradiated survivors of hereditary retinoblastoma who were originally diagnosed during 1914 to 2006, we quantified sarcoma risk with standardized incidence ratios (SIRs) and cumulative incidence analyses. We conducted analyses separately for bone and soft-tissue sarcomas occurring in the head and neck (in/near the radiotherapy field) versus body and extremities (out of field). RESULTS: Of 105 bone and 124 soft-tissue sarcomas, more than one half occurred in the head and neck (bone, 53.3%; soft tissue, 51.6%), one quarter in the body and extremities (bone, 29.5%; soft tissue, 25.0%), and approximately one fifth in unknown/unspecified locations (bone, 17.1%; soft tissue, 23.4%). We noted substantially higher risks compared with the general population for head and neck versus body and extremity tumors for both bone (SIR, 2,213; 95% CI, 1,671 to 2,873 v SIR, 169; 95% CI, 115 to 239) and soft-tissue sarcomas (SIR, 542; 95% CI, 418 to 692 v SIR, 45.7; 95% CI, 31.1 to 64.9). Head and neck bone and soft-tissue sarcomas were diagnosed beginning in early childhood and continued well into adulthood, reaching a 60-year cumulative incidence of 6.8% (95% CI, 5.0% to 8.7%) and 9.3% (95% CI, 7.0% to 11.7%), respectively. In contrast, body and extremity bone sarcoma incidence flattened after adolescence (3.5%; 95% CI, 2.3% to 4.8%), whereas body and extremity soft-tissue sarcoma incidence was rare until age 30, when incidence rose steeply (60-year cumulative incidence, 6.6%; 95% CI, 4.1% to 9.2%), particularly for females (9.4%; 95% CI, 5.1% to 13.8%). CONCLUSION: Strikingly elevated bone and soft-tissue sarcoma risks differ by age, location, and sex, highlighting important contributions of both radiotherapy and genetic susceptibility. These data provide guidance for the development of a risk-based screening protocol that focuses on the highest sarcoma risks by age, location, and sex.


Subject(s)
Bone Neoplasms/epidemiology , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Second Primary/epidemiology , Radiotherapy/adverse effects , Retinoblastoma/radiotherapy , Sarcoma/epidemiology , Survivors/statistics & numerical data , Adolescent , Adult , Bone Neoplasms/etiology , Child , Child, Preschool , Cohort Studies , Female , Follow-Up Studies , Genetic Predisposition to Disease , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , Neoplasms, Radiation-Induced/etiology , Neoplasms, Second Primary/etiology , Prognosis , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , Retinal Neoplasms/radiotherapy , Retinoblastoma/genetics , Retinoblastoma/pathology , Risk Assessment , Risk Factors , Sarcoma/etiology , Survival Rate , Young Adult
20.
Invest Ophthalmol Vis Sci ; 60(13): 4469-4478, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31658355

ABSTRACT

Purpose: The purpose of this study was to determine associations between macular drusen parameters derived from an automatic optical coherence tomography (OCT) algorithm, nonadvanced age-related macular degeneration (AMD) stage, and genetic variants. Methods: Eyes classified as early or intermediate AMD with OCT imaging and genetic data were selected (n = 239 eyes). Drusen area and volume measurements were estimated using the Zeiss Cirrus advanced retinal pigment epithelium analysis algorithm in a perifoveal zone centered on the fovea. Associations between drusen measurements and common genetic variants in the complement and high-density lipoprotein (HDL) lipid pathways and the ARMS2/HTRA1 variant were calculated using generalized estimating equations and linear mixed models adjusting for age, sex, smoking, body mass index, and education. Results: Drusen area ≥ the median was independently associated with a higher number of risk alleles for CFH risk score and risk variants in C3 and ARMS2/HTRA1 compared with eyes with no measurable drusen. Similar results were obtained for drusen volume. When all genes were analyzed in the same model, only CFH score and ARMS2/HTRA1 were associated with drusen measurements. HDL pathway genes were not significantly related to drusen parameters. Nonadvanced AMD stages were associated with OCT-derived drusen area and volume. Conclusions: Variants in CFH and ARMS2/HTRA1, commonly associated with advanced AMD, were independently associated with an increase in drusen burden determined by OCT in an allele dose dependent manner, in eyes with early and intermediate AMD. Biomarkers such as a quantitative classification of nonadvanced AMD and other OCT-derived subphenotypes could provide earlier anatomic endpoints for clinical trials and facilitate the development of new therapies for AMD.


Subject(s)
High-Temperature Requirement A Serine Peptidase 1/genetics , Macular Degeneration/genetics , Proteins/genetics , Retinal Drusen/diagnostic imaging , Retinal Drusen/genetics , Aged , Aged, 80 and over , Complement C3/genetics , Complement Factor H/genetics , Female , Humans , Male , Phenotype , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Risk Factors , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...