Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(25): 255703, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32160609

ABSTRACT

Here a simple and reproducible method for obtaining terahertz metasurfaces formed from multiwall carbon nanotubes (MWCNTs) is presented. The metasurfaces were obtained from a vertically aligned array of MWCNTs using a laser engraving technique followed by polymer covering. The structures under study demonstrate frequency-selective reflection in terahertz range following the Huygens-Fresnel formalism. For a normal incidence of the electromagnetic wave, the model for numerical calculation of backscattering from the metasurfaces was proposed. Lightweight and compact MWCNT-based metasurfaces are capable to replace conventional pyramidal absorbers and could serve as a versatile platform for scalable cost-efficient production of ultra-light electromagnetic components for THz applications.

2.
Nanotechnology ; 29(17): 174003, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29424712

ABSTRACT

Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.

3.
J Chem Phys ; 134(24): 244707, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21721657

ABSTRACT

Ab initio calculations of dielectric function and electron energy loss (EEL) function of periodically rippled armchair-edged graphene were performed in the framework of the random-phase approximation. The bending of graphene was found to remove restrictions on the electron transitions being forbidden in the flat graphene for certain light polarization. As a result, new peaks appear in the optical absorption spectrum and EEL spectrum of rippled graphene. Energy position, intensity, and width of the peaks are sensitive to the height of out-of-plane graphene bending that can be used in construction of graphene-based materials with variable transparency window.

SELECTION OF CITATIONS
SEARCH DETAIL
...