Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Anal Chem ; 94(7): 3135-3141, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35152703

ABSTRACT

The analysis of 1D anti-diagonal spectra from the projections of 2D double-quantum filtered correlation spectroscopy NMR spectra is presented for the determination of the compositions of liquid mixtures of linear and branched alkanes confined within porous media. These projected spectra do not include the effects of line broadening and therefore retain high-resolution information even in the presence of inhomogeneous magnetic fields as are commonly found in porous media. A partial least-square regression analysis is used to characterize the mixture compositions. Two case studies are considered. First, mixtures of 2-methyl alkanes and n-alkanes are investigated. It is shown that estimation of the mol % of branched species present was achieved with a root-mean-square error of prediction (RMSEP) of 1.4 mol %. Second, the quantification of multicomponent mixtures consisting of linear alkanes and 2-, 3-, and 4-monomethyl alkanes was considered. Discrimination of 2-methyl and linear alkanes from other branched isomers in the mixture was achieved, although discrimination between 3- and 4- monomethyl alkanes was not possible. Compositions of the linear alkane, 2-methyl alkane, and the total composition of 3- and 4-methyl alkanes were estimated with a RMSEP <3 mol %. The approach was then used to estimate the composition of the mixtures in terms of submolecular groups of CH3CH2, (CH3)2CH, and CH2CH(CH3)CH2 present in the mixtures; a RMSEP <1 mol % was achieved for all groups. The ability to characterize the mixture compositions in terms of molecular subgroups allows the application of the method to characterize mixtures containing multimethyl alkanes. The motivation for this work is to develop a method for determining the mixture composition inside the catalyst pores during Fischer-Tropsch synthesis. However, the method reported is generic and can be applied to any system in which there is a need to characterize mixture compositions of linear and branched alkanes.


Subject(s)
Alkanes , Hydrocarbons , Alkanes/analysis , Hydrocarbons/chemistry , Isomerism , Magnetic Resonance Spectroscopy , Porosity
2.
J Phys Chem B ; 124(48): 10971-10982, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33216551

ABSTRACT

The ability to measure and predict molecular diffusion coefficients in multicomponent mixtures is not only of fundamental scientific interest but also of significant relevance in understanding how catalytic processes proceed. In the present work, the direct measurement of the molecular diffusion of H2 and CO gas-phase species diffusing in n-alkane mixtures using pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) methods is reported. The work is of direct relevance to Fischer-Tropsch (FT) catalysis, with the measurements being made of the gas-wax system with the wax in both the bulk liquid state and when confined within a titania catalyst support, at temperatures and pressures typical of low-temperature FT synthesis. Molecular diffusion coefficients of H2 and CO within wax-saturated porous titania in the range (1.00-2.43) × 10-8 and (6.44-8.50) × 10-9 m2 s-1, respectively, were measured in the temperature range of 140-240 and 200-240 °C for H2 and CO, respectively, at a pressure of 40 bar. The wax mixture was typical of a wax produced during FT catalysis and had a molar average carbon number of 36. It is shown that the hydrogen diffusion coefficient within this wax mixture is consistent, to within experimental error, with the hydrogen diffusion coefficient measured in pure single-component n-hexatriacontane (n-C36) wax; this result held with the waxes in the bulk liquid state and when confined within the porous titania. The tortuosity of the porous titania was also measured using PFG NMR and found to be 1.77; this value is independent of temperature. The ability of existing correlations to predict these experimentally determined data was then critically evaluated. Although the Wilke-Chang correlation was found to underestimate the molecular diffusion coefficients of both H2 and CO diffusing in the wax in both the bulk state and when confined within the porous titania, parameterized correlations based on the rough hard sphere model, having accounted for the experimentally determined tortuosity factor, predicted the H2 and CO diffusion within bulk and confined wax to within 3%.

3.
Anal Chem ; 92(7): 5125-5133, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32142268

ABSTRACT

Pulsed field gradient (PFG) NMR measurements, combined with a novel optimization method, are used to determine the composition of hydrocarbon mixtures of linear alkanes (C7-C16) in both the bulk liquid state and when imbibed within a porous medium of mean pore diameter 28.6 nm. The method predicts the average carbon number of a given mixture to an accuracy of ±1 carbon number and the mole fraction of a mixture component to within an average root-mean-square error of ±0.036 with just three calibration mixtures. Given that the method can be applied at any conditions of temperature and pressure at which the PFG NMR measurements are made, the method has the potential for application in characterizing hydrocarbon liquid mixtures inside porous media and at the operating conditions relevant to, for example, hydrocarbon recovery and heterogeneous catalysis.

4.
J Phys Chem Lett ; 10(19): 5781-5785, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31509420

ABSTRACT

The noninvasive, in situ chemical identification of liquid mixtures confined in porous materials is experimentally challenging. NMR is chemically resolved and applicable to optically opaque systems but suffers from a significant loss in spectral resolution in the presence of the magnetic field inhomogeneities typical of porous media. In this work, we introduce a method of analysis of conventional two-dimensional (2D) 1H NMR correlation spectroscopy (COSY) spectra based on the extraction of 1D antidiagonal projections, which are free from line-broadening effects and can therefore be used for chemical species identification. Here, we show the application of the technique to the measurement of linear n-alkanes where the cross-to-diagonal peak ratios are shown to follow a power-law curve as a function of the chain length. This calibration enables quantifying mixtures of linear hydrocarbons confined in any porous material independently of temperature or inter-molecular dynamics. Thus, this is a promising tool for quantitative chemical reaction monitoring studies in heterogeneous systems under operando experimental conditions.

5.
Magn Reson Imaging ; 56: 24-31, 2019 02.
Article in English | MEDLINE | ID: mdl-30337126

ABSTRACT

A method for under-sampling and compressed sensing of 3D spatially-resolved propagators is presented and demonstrated for flow in a packed bed and a heterogeneous carbonate rock. By sampling only 12.5% of q,k-space, the experimental acquisition time was reduced by almost an order of magnitude. In particular, for both systems studied, a 3D image was acquired at 1 mm isotropic spatial resolution such that 134,400 local propagators were obtained. Data were acquired in ~1 h and ~11 h for the packed bed and rock, respectively. It is shown that spatial resolution and under-sampling using this implementation retains the quantitative nature of the propagator measurement, and differences between implementation of this measurement in two and three dimensions are identified. The potential for 3D spatially-resolved propagators to provide new insights into transport processes in porous media by characterisation of the statistical moments of the propagators is discussed.


Subject(s)
Geologic Sediments/chemistry , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Signal Processing, Computer-Assisted , Porosity
6.
Magn Reson Imaging ; 56: 70-76, 2019 02.
Article in English | MEDLINE | ID: mdl-30228017

ABSTRACT

Speed of acquisition is paramount for the application of magnetic resonance to flow experiments through porous rocks. One popular method for imaging core floods is the spatially resolved T2 experiment which can separate fluids either by their viscosity contrast or by doping one fluid with a relaxation agent. Existing techniques for spatial-T2 may suffer from long acquisition times and eddy currents due to the pulsing of magnetic field gradients. Here, we propose a constant gradient method for 1d spatially-resolved T2 which embraces the speed of frequency encoding techniques and avoids eddy currents by the absence of any gradient ramps during the radio frequency (r.f.) pulse train. We provide the operating envelope for this kind of experiment, which is restricted due to the slice selectivity of the r.f. pulses in the presence of the magnetic field gradient. Additionally, we show that the effects of self-diffusion and the mixing of T1 and T2 contributions are manageable. As an illustration, we have applied this technique to an enhanced oil recovery experiment. The two fluid phases were tracked without any doping and with a time resolution of 40 s. In this case, the increased time resolution allowed us to observe dynamic flow phenomena such as fluid fingering and the calculation of the velocity of the fluid displacement fronts.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Spectroscopy/methods , Diffusion , Equipment Design , Fourier Analysis , Porosity , Radio Waves
7.
Magn Reson Imaging ; 56: 138-143, 2019 02.
Article in English | MEDLINE | ID: mdl-30301639

ABSTRACT

Understanding the reactivity and mass transport properties of porous heterogenous catalysts is important for the development of new materials. Whereas MRI has previously been used to correlate chemical kinetics and hydrodynamics under operando conditions, this paper demonstrates that a modern benchtop NMR spectrometer is a suitable alternative to obtain diverse reaction information in porous heterogeneous catalyst materials on a smaller scale. Besides information about the chemical conversion within the pores, it can also be used to study changes of surface interaction by T1/T2 NMR relaxometry techniques and changes in mass transport by PFG NMR from a single chemical reaction.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Spectrophotometry/instrumentation , Spectrophotometry/methods , Adsorption , Catalysis , Fermentation , Hydrodynamics , Hydrogen , Kinetics , Magnetic Resonance Imaging , Neutrons , Porosity , Scattering, Radiation , Surface Properties
8.
J Magn Reson ; 299: 101-108, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30593999

ABSTRACT

In the last decades, the 1H NMR T2-T2 relaxation-exchange (REXSY) technique has become an essential tool for the molecular investigation of simple and complex fluids in heterogeneous porous solids and soft matter, where the mixing-time-evolution of cross-correlated T2-T2 peaks enables a quantitative study of diffusive exchange kinetics in multi-component systems. Here, we present a spatially-resolved implementation of the T2-T2 correlation technique, named z-T2-T2, based on one-dimensional spatial mapping along z using a rapid frequency-encode imaging scheme. Compared to other phase-encoding methods, the adopted MRI technique has two distinct advantages: (i) is has the same experimental duration of a standard (bulk) T2-T2 measurement, and (ii) it provides a high spatial resolution. The proposed z-T2-T2 method is first validated against bulk T2-T2 measurements on homogeneous phantom consisting of cyclohexane uniformly imbibed in finely-sized α-Al2O3 particles at a spatial resolution of 0.47 mm; thereafter, its performance is demonstrated, on a layered bed of multi-sized α-Al2O3 particles, for revealing spatially-dependent molecular exchange kinetics properties of intra- and inter-particle cyclohexane as a function of particle size. It is found that localised z-T2-T2 spectra provide well resolved cross peaks whilst such resolution is lost in standard bulk T2-T2 data. Future prospective applications of the method lie, in particular, in the local characterisation of mass transport phenomena in multi-component porous media, such as rock cores and heterogeneous catalysts.

9.
Chem Commun (Camb) ; 54(72): 10191-10194, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30137063

ABSTRACT

Nuclear magnetic resonance (NMR) and total neutron scattering techniques are established methods for the characterisation of liquid phases in confined pore spaces during chemical reactions. Herein, we describe the first combined total neutron scattering - NMR setup as a probe for the catalytic heterogeneous reduction of benzene-d6 with D2 in 3 wt% Pt/MCM-41.

10.
J Magn Reson ; 295: 45-56, 2018 10.
Article in English | MEDLINE | ID: mdl-30096552

ABSTRACT

A method is presented for accelerating the acquisition of spatially-resolved displacement propagators via under-sampling of an Alternating Pulsed Gradient Stimulated Echo - Rapid Acquisition with Relaxation Enhancement (APGSTE-RARE) data acquisition with compressed sensing image reconstruction. The method was demonstrated with respect to the acquisition of 2D spatially-resolved displacement propagators of water flowing through a packed bed of hollow cylinders. The q,k-space was under-sampled according to variable-density pseudo-random sampling patterns. The quality of compressed sensing reconstructions of spatially-resolved propagators at a range of sampling fractions was assessed using the peak signal-to-noise ratio (PSNR) as a quality metric. Propagators of good quality (PSNR 33.2 dB) were reconstructed from only 6.25% of all data points in q,k-space, resulting in a reduction in the data acquisition time from 4 h to 14 min. The spatially-resolved propagators were reconstructed using both the total variation and nuclear norm sparsifying transforms; use of total variation resulted in a slightly higher quality of the reconstructed image in most cases. To illustrate the power of this method to characterise heterogeneous flow in porous media, the method is applied to the characterisation of flow in a vuggy carbonate rock.

11.
Annu Rev Chem Biomol Eng ; 8: 227-247, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592175

ABSTRACT

This review aims to illustrate the diversity of measurements that can be made using magnetic resonance techniques, which have the potential to provide insights into chemical engineering systems that cannot readily be achieved using any other method. Perhaps the most notable advantage in using magnetic resonance methods is that both chemistry and transport can be followed in three dimensions, in optically opaque systems, and without the need for tracers to be introduced into the system. Here we focus on hydrodynamics and, in particular, applications to rheology, pipe flow, and fixed-bed and gas-solid fluidized bed reactors. With increasing development of industrially relevant sample environments and undersampling data acquisition strategies that can reduce acquisition times to <1 s, magnetic resonance is finding increasing application in chemical engineering research.


Subject(s)
Chemical Engineering/methods , Magnetic Resonance Imaging/methods , Chemical Engineering/instrumentation , Hydrodynamics , Magnetic Resonance Imaging/instrumentation , Rheology/instrumentation , Rheology/methods
12.
J Magn Reson ; 274: 103-114, 2017 01.
Article in English | MEDLINE | ID: mdl-27898299

ABSTRACT

Many industrial flow processes are sensitive to changes in the rheological behaviour of process fluids, and there therefore exists a need for methods that provide online, or inline, rheological characterisation necessary for process control and optimisation over timescales of minutes or less. Nuclear magnetic resonance (NMR) offers a non-invasive technique for this application, without limitation on optical opacity. We present a Bayesian analysis approach using pulsed field gradient (PFG) NMR to enable estimation of the rheological parameters of Herschel-Bulkley fluids in a pipe flow geometry, characterised by a flow behaviour index n, yield stress τ0, and consistency factor k, by analysis of the signal in q-space. This approach eliminates the need for velocity image acquisition and expensive gradient hardware. We investigate the robustness of the proposed Bayesian NMR approach to noisy data and reduced sampling using simulated NMR data and show that even with a signal-to-noise ratio (SNR) of 100, only 16 points are required to be sampled to provide rheological parameters accurate to within 2% of the ground truth. Experimental validation is provided through an experimental case study on Carbopol 940 solutions (model Herschel-Bulkley fluids) using PFG NMR at a 1H resonance frequency of 85.2MHz; for SNR>1000, only 8 points are required to be sampled. This corresponds to a total acquisition time of <60s and represents an 88% reduction in acquisition time when compared to MR flow imaging. Comparison of the shear stress-shear rate relationship, quantified using Bayesian NMR, with non-Bayesian NMR methods demonstrates that the Bayesian NMR approach is in agreement with MR flow imaging to within the accuracy of the measurement. Furthermore, as we increase the concentration of Carbopol 940 we observe a change in rheological characteristics, probably due to shear history-dependent behaviour and the different geometries used. This behaviour highlights the need for online, or inline, rheological characterisation in industrial process applications.

13.
J Magn Reson ; 273: 113-123, 2016 12.
Article in English | MEDLINE | ID: mdl-27821291

ABSTRACT

Ultrashort echo time (UTE) imaging is commonly used in medical MRI to image 'solid' types of tissue; to date it has not been widely used in engineering or materials science, in part due to the relatively long imaging times required. Here we show how the acquisition time for UTE can be reduced to enable a preliminary study of a fluidized bed, a type of reactor commonly used throughout industry containing short T2∗ material and requiring fast imaging. We demonstrate UTE imaging of particles with a T2∗ of only 185µs, and an image acquisition time of only 25ms. The images are obtained using compressed sensing (CS) and by exploiting the Hermitian symmetry of k-space, to increase the resolution beyond that predicted by the Nyquist theorem. The technique is demonstrated by obtaining one- and two-dimensional images of bubbles rising in a model fluidized bed reactor.

14.
J Magn Reson ; 261: 27-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26524651

ABSTRACT

In this work, a magnetic resonance (MR) imaging method for accelerating the acquisition time of two dimensional concentration maps of different chemical species in mixtures by the use of compressed sensing (CS) is presented. Whilst 2D-concentration maps with a high spatial resolution are prohibitively time-consuming to acquire using full k-space sampling techniques, CS enables the reconstruction of quantitative concentration maps from sub-sampled k-space data. First, the method was tested by reconstructing simulated data. Then, the CS algorithm was used to reconstruct concentration maps of binary mixtures of 1,4-dioxane and cyclooctane in different samples with a field-of-view of 22mm and a spatial resolution of 344µm×344µm. Spiral based trajectories were used as sampling schemes. For the data acquisition, eight scans with slightly different trajectories were applied resulting in a total acquisition time of about 8min. In contrast, a conventional chemical shift imaging experiment at the same resolution would require about 17h. To get quantitative results, a careful weighting of the regularisation parameter (via the L-curve approach) or contrast-enhancing Bregman iterations are applied for the reconstruction of the concentration maps. Both approaches yield relative errors of the concentration map of less than 2mol-% without any calibration prior to the measurement. The accuracy of the reconstructed concentration maps deteriorates when the reconstruction model is biased by systematic errors such as large inhomogeneities in the static magnetic field. The presented method is a powerful tool for the fast acquisition of concentration maps that can provide valuable information for the investigation of many phenomena in chemical engineering applications.

15.
J Magn Reson ; 245: 116-24, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25036293

ABSTRACT

Ultrashort echo time (UTE) imaging is a well-known technique used in medical MRI, however, the implementation of the sequence remains non-trivial. This paper introduces UTE for non-medical applications and outlines a method for the implementation of UTE to enable accurate slice selection and short acquisition times. Slice selection in UTE requires fast, accurate switching of the gradient and r.f. pulses. Here a gradient "pre-equalization" technique is used to optimize the gradient switching and achieve an effective echo time of 10µs. In order to minimize the echo time, k-space is sampled radially. A compressed sensing approach is used to minimize the total acquisition time. Using the corrections for slice selection and acquisition along with novel image reconstruction techniques, UTE is shown to be a viable method to study samples of cork and rubber with a shorter signal lifetime than can typically be measured. Further, the compressed sensing image reconstruction algorithm is shown to provide accurate images of the samples with as little as 12.5% of the full k-space data set, potentially permitting real time imaging of short T2(*) materials.

16.
Article in English | MEDLINE | ID: mdl-25019881

ABSTRACT

We present simultaneous measurement of dispersed and continuous phase flow fields for liquid-liquid systems obtained using ultrafast magnetic resonance imaging. Chemical-shift artifacts, which are otherwise highly problematic for this type of measurement, are overcome using a compressed sensing based image reconstruction algorithm that accounts for off-resonant signal components. This scheme is combined with high-temporal-resolution spiral imaging (188 frames per second), which is noted for its robustness to flow. It is demonstrated that both quantitative signal intensity and phase preconditioning are preserved throughout the image reconstruction algorithm. Measurements are acquired of oil droplets of varying viscosity rising through stagnant water. From these data it is apparent that the internal droplet flow fields are heavily influenced by the droplet shape oscillations, and that the accurate modeling of droplet shape is of critical importance in the modeling of droplet-side hydrodynamics. The application of the technique to three-component systems is also demonstrated, as is the measurement of local concentration maps of a mutually soluble species (acetone in polydimethylsiloxane-water).


Subject(s)
Magnetic Resonance Imaging/methods , Rheology/methods , Acetone , Algorithms , Anisotropy , Artifacts , Computer Simulation , Dimethylpolysiloxanes , Hydrodynamics , Image Processing, Computer-Assisted/methods , Models, Theoretical , Motion , Oils , Viscosity , Water
17.
Chem Commun (Camb) ; 49(89): 10519-21, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24088715

ABSTRACT

Operando magnetic resonance (MR) spectroscopy has been used to follow an ethene oligomerisation reaction performed at 110 °C, 28 barg over a 1 wt% Ni/SiO2-Al2O3 catalyst. Spectra acquired over the timecourse of the reaction allow the calculation of conversion and product distribution as a function of time-on-stream.

18.
J Magn Reson ; 229: 2-11, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23260397

ABSTRACT

The past five years have seen exciting new developments in Flow MRI. Two-dimensional images are now routinely acquired in 100-200 ms and, in some cases, acquisition times of 5-10 ms are possible. This has been achieved not only by advances in the implementation of existing pulse sequences but also in data acquisition strategies, such as Compressed Sensing and Bayesian approaches, and technical advices in parallel imaging and signal enhancement methods. In particular, the short imaging timescales that are now achieved offer significant opportunities in the study of transient flow phenomena.


Subject(s)
Magnetic Resonance Imaging/trends , Algorithms , Bayes Theorem , Gases , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/trends , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods
19.
Phys Rev Lett ; 108(26): 264505, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-23004990

ABSTRACT

Ultrafast magnetic resonance imaging, employing spiral reciprocal space sampling and compressed sensing image reconstruction, is used to acquire velocity maps of the liquid phase in gas-liquid multiphase flows. Velocity maps were acquired at a rate of 188 frames per second. The method enables quantitative characterization of the wake dynamics of single bubbles and bubble swarms. To illustrate this, we use the new technique to demonstrate the role of bubble wake vorticity in driving bubble secondary motions, and in governing the structure of turbulence in multiphase flows.

20.
J Magn Reson ; 216: 94-100, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22329973

ABSTRACT

We describe the first study comparing the ability of phase shift velocity imaging and Overhauser dynamic nuclear polarization (DNP)-enhanced imaging to generate contrast for visualizing the flow of water. Prepolarization of water by the Overhauser DNP mechanism is performed in the 0.35T fringe field of an unshielded 2.0T non-clinical MRI magnet, followed by the rapid transfer of polarization-enhanced water to the 2.0T imaging location. This technique, previously named remotely enhanced liquids for image contrast (RELIC), produces a continuous flow of hyperpolarized water and gives up to an -8.2-fold enhanced signal within the image with respect to thermally polarized signal at 2.0T. Using flow through a cylindrical expansion phantom as a model system, spin-echo intensity images with DNP are compared to 3D phase shift velocity images to illustrate the complementary information available from the two techniques. The spin-echo intensity images enhanced with DNP show that the levels of enhancement provide an estimate of the transient propagation of flow, while the phase shift velocity images quantitatively measure the velocity of each imaging voxel. Phase shift velocity images acquired with and without DNP show that DNP weights velocity values towards those of the inflowing (DNP-enhanced) water, while velocity images without DNP more accurately reflect the average steady-state velocity of each voxel. We conclude that imaging with DNP prepolarized water better captures the transient path of water shortly after injection, while phase shift velocity imaging is best for quantifying the steady-state flow of water throughout the entire phantom.


Subject(s)
Magnetic Resonance Imaging/methods , Electron Spin Resonance Spectroscopy , Fourier Analysis , Free Radicals , Microscopy , Microwaves , Phantoms, Imaging , Software , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...