Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(8): 083510, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30184681

ABSTRACT

A glass Cherenkov detector, called the Diagnostic for Areal Density (DAD), has been built and implemented at the OMEGA laser facility for measuring fusion gammas above 430 keV, from which remaining shell ⟨ρR⟩ abl can be determined. A proof-of-principle experiment is discussed, where signals from a surrogate gas Cherenkov detector are compared with reported values from the wedge range filter and charged particle spectrometer and found to correlate strongly. The design of the more compact port-based DAD diagnostic and results from the commissioning shots are then presented. Once absolutely calibrated, the DAD will be capable of reporting remaining shell ⟨ρR⟩ abl for plastic and glass capsules within minutes of a shot and with potentially higher precision than existing techniques.

2.
Rev Sci Instrum ; 84(7): 073504, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23902060

ABSTRACT

The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear γ emissions from the implosion. Of primary interest are γ bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity γ Source (HIγS) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.

3.
Rev Sci Instrum ; 83(10): 10D719, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126893

ABSTRACT

Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

4.
Rev Sci Instrum ; 81(10): 10D322, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033846

ABSTRACT

Absolute bang time measurements with the gas Cherenkov detector (GCD) and gamma reaction history (GRH) diagnostic have been performed to high precision at the OMEGA laser facility at the University of Rochester with bang time values for the two diagnostics agreeing to within 5 ps on average. X-ray timing measurements of laser-target coupling were used to calibrate a facility-generated laser timing fiducial with rms spreads in the measured coupling times of 9 ps for both GCD and GRH. Increased fusion yields at the National Ignition Facility (NIF) will allow for improved measurement precision with the GRH easily exceeding NIF system design requirements.

SELECTION OF CITATIONS
SEARCH DETAIL
...