Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oncol Rep ; 49(2)2023 02.
Article in English | MEDLINE | ID: mdl-36524367

ABSTRACT

Carbonic anhydrase IX (CA IX) is a transmembrane enzyme participating in adaptive responses of tumors to hypoxia and acidosis. CA IX regulates pH, facilitates metabolic reprogramming, and supports migration, invasion and metastasis of cancer cells. Extracellular domain (ECD) of CA IX can be shed to medium and body fluids by a disintegrin and metalloproteinase (ADAM) 17. Here we show for the first time that CA IX ECD shedding can be also executed by ADAM10, a close relative of ADAM17, via an overlapping cleavage site in the stalk region of CA IX connecting its exofacial catalytic site with the transmembrane region. This finding is supported by biochemical evidence using recombinant human ADAM10 protein, colocalization of ADAM10 with CA IX, ectopic expression of a dominant­negative mutant of ADAM10 and RNA interference­mediated suppression of ADAM10. Induction of the CA IX ECD cleavage with ADAM17 and/or ADAM10 activators revealed their additive effect. Similarly, additive effect was observed with an ADAM17­inhibiting antibody and an ADAM10­preferential inhibitor GI254023X. These data indicated that ADAM10 is a CA IX sheddase acting on CA IX non­redundantly to ADAM17.


Subject(s)
ADAM Proteins , Carbonic Anhydrase IX , Humans , ADAM Proteins/chemistry , ADAM Proteins/metabolism , ADAM10 Protein/chemistry , ADAM10 Protein/metabolism , ADAM17 Protein/chemistry , ADAM17 Protein/metabolism , Carbonic Anhydrase IX/chemistry , Carbonic Anhydrase IX/metabolism , Membrane Proteins/metabolism , Neoplasms/metabolism
2.
Br J Cancer ; 122(11): 1590-1603, 2020 05.
Article in English | MEDLINE | ID: mdl-32210366

ABSTRACT

BACKGROUND: Carbonic anhydrase IX (CA IX) is a hypoxia-induced enzyme regulating tumour pH and facilitating cell migration/invasion. It is primarily expressed as a transmembrane cell-surface protein, but its ectodomain can be shed by ADAM17 to extracellular space. This study aims to elucidate the impact of CA IX shedding on cancer cells. METHODS: We generated a non-shed CA IX mutant by deletion of amino acids 393-402 from the stalk region and studied its phenotypic effects compared to full-length, shedding-competent CA IX using a range of assays based on immunodetection, confocal microscopy, in vitro real-time cell monitoring and in vivo tumour cell inoculation using xenografted NMRI and C57BL/6J female mice. RESULTS: We demonstrated that the impairment of shedding does not alter the ability of CA IX to bind ADAM17, internalise, form oligomers and regulate pH, but induces cancer-promoting changes in extracellular proteome. Moreover, it affects intrinsic properties of cells expressing the non-shed variant, in terms of their increased ability to migrate, generate primary tumours and form metastatic lesions in lungs. CONCLUSIONS: Our results show that the ectodomain shedding controls pro-tumorigenic and pro-metastatic roles of the cell-associated CA IX and suggest that this phenomenon should be considered when developing CA IX-targeted therapeutic strategies.


Subject(s)
Carbonic Anhydrase IX/metabolism , Carcinogenesis/metabolism , Neoplasms/pathology , ADAM17 Protein/metabolism , Animals , Carcinogenesis/pathology , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness/pathology , Neoplasms/metabolism , Phenotype
3.
Int J Mol Sci ; 20(11)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31167468

ABSTRACT

Tumor metastasis is tightly linked with invasive membrane protrusions, invadopodia, formed by actively invading tumor cells. Hypoxia and pH modulation play a role in the invadopodia formation and in their matrix degradation ability. Tumor-associated carbonic anhydrase IX (CAIX), induced by hypoxia, is essential for pH regulation and migration, predisposing it as an active component of invadopodia. To investigate this assumption, we employed silencing and inhibition of CA9, invadopodia isolation and matrix degradation assay. Quail chorioallantoic membranes with implanted tumor cells, and lung colonization assay in murine model were used to assess efficiency of in vivo invasion and the impact of CAIX targeting antibodies. We showed that CAIX co-distributes to invadopodia with cortactin, MMP14, NBCe1, and phospho-PKA. Suppression or enzymatic inhibition of CAIX leads to impaired invadopodia formation and matrix degradation. Loss of CAIX attenuated phosphorylation of Y421-cortactin and influenced molecular machinery coordinating actin polymerization essential for invadopodia growth. Treatment of tumor cells by CAIX-specific antibodies against carbonic or proteoglycan domains results in reduced invasion and extravasation in vivo. For the first time, we demonstrated in vivo localization of CAIX within invadopodia. Our findings confirm the key role of CAIX in the metastatic process and gives rationale for its targeting during anti-metastatic therapy.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Carbonic Anhydrase IX/genetics , Hydrogen-Ion Concentration , Podosomes/metabolism , Actins/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Fluorescent Antibody Technique , Humans , Mice , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation , Proteolysis , Signal Transduction , Sodium-Bicarbonate Symporters/metabolism
4.
Int J Mol Sci ; 21(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31905844

ABSTRACT

In contrast to human carbonic anhydrase IX (hCA IX) that has been extensively studied with respect to its molecular and functional properties as well as regulation and expression, the mouse ortholog has been investigated primarily in relation to tissue distribution and characterization of CA IX-deficient mice. Thus, no data describing transcriptional regulation and functional properties of the mouse CA IX (mCA IX) have been published so far, despite its evident potential as a biomarker/target in pre-clinical animal models of tumor hypoxia. Here, we investigated for the first time, the transcriptional regulation of the Car9 gene with a detailed description of its promoter. Moreover, we performed a functional analysis of the mCA IX protein focused on pH regulation, cell-cell adhesion, and migration. Finally, we revealed an absence of a soluble extracellular form of mCA IX and provided the first experimental evidence of mCA IX presence in exosomes. In conclusion, though the protein characteristics of hCA IX and mCA IX are highly similar, and the transcription of both genes is predominantly governed by hypoxia, some attributes of transcriptional regulation are specific for either human or mouse and as such, could result in different tissue expression and data interpretation.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase IX/metabolism , Gene Expression Regulation , Animals , Antigens, Neoplasm/chemistry , Binding Sites , Carbonic Anhydrase IX/chemistry , Cell Adhesion , Cell Movement , Exosomes , Humans , Hydrogen-Ion Concentration , Hypoxia , Mice , Promoter Regions, Genetic , Protein Domains
5.
Oncotarget ; 8(44): 77819-77835, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100428

ABSTRACT

Besides hypoxia, other factors and molecules such as lactate, succinate, and reactive oxygen species activate transcription factor hypoxia-inducible factor-1 (HIF-1) even in normoxia. One of the main target gene products of HIF-1 is carbonic anhydrase IX (CA IX). CA IX is overexpressed in many tumors and serves as prognostic factor for hypoxic, aggressive and malignant cancers. CA IX is also induced in normoxia in high cell density. In this study, we observed that lactate induces CA IX expression in normoxic cancer cells in vitro and in vivo. We further evidenced that participation of both HIF-1 and specificity protein 1 (SP1) transcription factors is crucial for lactate-driven normoxic induction of the CA9 gene. By inducing CA IX, lactate can facilitate the maintenance of cancer cell aggressive behavior in normoxia.

6.
J Enzyme Inhib Med Chem ; 31(sup1): 110-118, 2016.
Article in English | MEDLINE | ID: mdl-27140748

ABSTRACT

Encapsulation is a well-established method of biomaterial protection, controlled release, and efficient delivery. Here we evaluated encapsulation of monoclonal antibody M75 directed to tumor biomarker carbonic anhydrase IX (CA IX) into alginate microbeads (SA-beads) or microcapsules made of sodium alginate, cellulose sulfate, and poly(methylene-co-guanidine) (PMCG). M75 antibody release was quantified using ELISA and its binding properties were assessed by immunodetection methods. SA-beads showed rapid M75 antibody release in the first hour, followed by steady release during the whole experiment of 7 days. In contrast, the M75 release from PMCG capsules was gradual, reaching the maximum concentration on the 7th day. The release was more efficient at pH 6.8 compared to pH 7.4. The released antibody could recognize CA IX, and target the CA IX-positive cells in 3D spheroids. In conclusion, SA-beads and PMCG microcapsules can be considered as promising antibody reservoirs for targeting of cancer cells.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antigens, Neoplasm/immunology , Carbonic Anhydrase IX/immunology , Drug Delivery Systems/methods , Hydrogel, Polyethylene Glycol Dimethacrylate , Microspheres , Neoplasms/metabolism , Antibodies, Monoclonal/immunology , Antigens, Neoplasm/metabolism , Antineoplastic Agents/administration & dosage , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Carbonic Anhydrase IX/metabolism , Drug Liberation , Humans , Hydrogen-Ion Concentration , Neoplasms/pathology , Spheroids, Cellular/metabolism , Tumor Cells, Cultured
7.
BMC Cancer ; 16: 239, 2016 Mar 19.
Article in English | MEDLINE | ID: mdl-26993100

ABSTRACT

BACKGROUND: Carbonic anhydrase IX (CA IX) is a tumor-associated, highly active, transmembrane carbonic anhydrase isoform regulated by hypoxia and implicated in pH control and adhesion-migration-invasion. CA IX ectodomain (ECD) is shed from the tumor cell surface to serum/plasma of patients, where it can signify cancer prognosis. We previously showed that the CA IX ECD release is mediated by disintegrin and metalloproteinase ADAM17. Here we investigated the CA IX ECD shedding in tumor cells undergoing apoptosis in response to cytotoxic drugs, including cycloheximide and doxorubicin. METHODS: Presence of cell surface CA IX was correlated to the extent of apoptosis by flow cytometry in cell lines with natural or ectopic CA IX expression. CA IX ECD level was assessed by ELISA using CA IX-specific monoclonal antibodies. Effect of recombinant CA IX ECD on the activation of molecular pathways was evaluated using the cell-based dual-luciferase reporter assay. RESULTS: We found a significantly lower occurrence of apoptosis in the CA IX-positive cell subpopulation than in the CA IX-negative one. We also demonstrated that the cell-surface CA IX level dropped during the death progress due to an increased ECD shedding, which required a functional ADAM17. Inhibitors of metalloproteinases reduced CA IX ECD shedding, but not apoptosis. The CA IX ECD release induced by cytotoxic drugs was connected to elevated expression of CA IX in the surviving fraction of cells. Moreover, an externally added recombinant CA IX ECD activated a pathway driven by the Nanog transcription factor implicated in epithelial-mesenchymal transition and stemness. CONCLUSIONS: These findings imply that the increased level of the circulating CA IX ECD might be useful as an indicator of an effective antitumor chemotherapy. Conversely, elevated CA IX ECD might generate unwanted effects through autocrine/paracrine signaling potentially contributing to resistance and tumor progression.


Subject(s)
ADAM17 Protein/genetics , Carbonic Anhydrase IX/genetics , Epithelial-Mesenchymal Transition/genetics , Neoplasms/genetics , ADAM17 Protein/metabolism , Antibodies, Monoclonal/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , Carbonic Anhydrase IX/administration & dosage , Carbonic Anhydrase IX/metabolism , Cell Hypoxia/genetics , Cycloheximide/administration & dosage , Female , HeLa Cells , Humans , Male , Neoplasms/pathology
8.
Int J Oncol ; 47(1): 51-60, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25955133

ABSTRACT

One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antigens, Neoplasm/genetics , Carbonic Anhydrases/genetics , Drug Resistance, Neoplasm/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isothiocyanates/pharmacology , Ovarian Neoplasms/metabolism , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX , Carbonic Anhydrases/metabolism , Cell Hypoxia/drug effects , Cell Movement/drug effects , Cisplatin/pharmacology , Doxorubicin/pharmacology , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Sulfoxides , Tumor Microenvironment/drug effects
9.
Front Physiol ; 4: 400, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24409151

ABSTRACT

Acidic tissue microenvironment contributes to tumor progression via multiple effects including the activation of angiogenic factors and proteases, reduced cell-cell adhesion, increased migration and invasion, etc. In addition, intratumoral acidosis can influence the uptake of anticancer drugs and modulate the response of tumors to conventional therapy. Acidification of the tumor microenvironment often develops due to hypoxia-triggered oncogenic metabolism, which leads to the extensive production of lactate, protons, and carbon dioxide. In order to avoid intracellular accumulation of the acidic metabolic products, which is incompatible with the survival and proliferation, tumor cells activate molecular machinery that regulates pH by driving transmembrane inside-out and outside-in ion fluxes. Carbonic anhydrase IX (CA IX) is a hypoxia-induced catalytic component of the bicarbonate import arm of this machinery. Through its catalytic activity, CA IX directly participates in many acidosis-induced features of tumor phenotype as demonstrated by manipulating its expression and/or by in vitro mutagenesis. CA IX can function as a survival factor protecting tumor cells from hypoxia and acidosis, as a pro-migratory factor facilitating cell movement and invasion, as a signaling molecule transducing extracellular signals to intracellular pathways (including major signaling and metabolic cascades) and converting intracellular signals to extracellular effects on adhesion, proteolysis, and other processes. These functional implications of CA IX in cancer are supported by numerous clinical studies demonstrating the association of CA IX with various clinical correlates and markers of aggressive tumor behavior. Although our understanding of the many faces of CA IX is still incomplete, existing knowledge supports the view that CA IX is a biologically and clinically relevant molecule, exploitable in anticancer strategies aimed at targeting adaptive responses to hypoxia and/or acidosis.

10.
Int J Oncol ; 29(4): 1025-33, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16964400

ABSTRACT

Most solid tumors display extracellular acidosis, which only partially overlaps with hypoxia and induces distinct adaptive changes leading to aggressive phenotype. Although acidosis is mainly attributable to excessive production of lactic acid, it also involves carbonic anhydrase (CA) IX-mediated conversion of CO(2) to an extracellular proton and a bicarbonate ion transported to cytoplasm. CA IX is pre-dominantly expressed in tumors with poor prognosis and its transcription and activity are induced by hypoxia. Here we investigated whether low extracellular pH in absence of hypoxia can influence CA IX expression in cell lines derived from glioblastoma, a tumor type particularly linked with acidosis. Our data show that extracellular acidosis increased the level of CA IX protein, mRNA and the activity of minimal CA9 promoter that contains binding sites for HIF-1 and SP-1 transcription factors. Mutation within each of these two biding sites reduced the promoter activity, but did not eliminate the increase by acidosis. Transfection of HIF-1alpha cDNA produced additive inducing effect with acidosis. Normoxic acidosis was accompanied by HIF-1alpha protein accumulation and transiently increased phosphorylation of ERK1/2. Expression of a dominant-negative mutant of ERK2 reduced the CA9 promoter activity in both standard and acidic conditions. Similar result was obtained by inhibitors of MAPK and PI3K pathways, whose combination completely suppressed CA IX expression and abolished induction by acidosis. Altogether, our results suggest that acidosis increases the CA IX expression via a hypoxia-independent mechanism that operates through modulation of the basic CA9 transcriptional machinery.


Subject(s)
Acidosis/enzymology , Antigens, Neoplasm/genetics , Carbonic Anhydrases/genetics , Central Nervous System Neoplasms/enzymology , Glioblastoma/enzymology , Transcription, Genetic , Acidosis/genetics , Antigens, Neoplasm/analysis , Carbonic Anhydrase IX , Carbonic Anhydrases/analysis , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Cell Survival , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...