Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203826

ABSTRACT

Blends of poly(lactic acid) (PLA) with poly(propylene carbonate) (PPC) are currently in the phase of intensive study due to their promising properties and environmentally friendly features. Intensive study and further commercialization of PPC-based polymers or their blends, as usual, will soon face the problem of their waste occurring in the environment, including soil. For this reason, it is worth comprehensively studying the degradation rate of these polymers over a long period of time in soil and, for comparison, in phosphate buffer to understand the difference in this process and evaluate the potential application of such materials toward agrochemical and agricultural purposes. The degradation rate of the samples was generally accompanied by weight loss and a decrease in molecular weight, which was facilitated by the presence of PPC. The incubation of the samples in the aqueous media yielded greater surface erosions compared to the degradation in soil, which was attributed to the leaching of the low molecular degradation species out of the foils. The phytotoxicity study confirmed the no toxic impact of the PPC on tested plants, indicating it as a "green" material, which is crucial information for further, more comprehensive study of this polymer toward any type of sustainable application.


Subject(s)
Agriculture , Polypropylenes , Soil , Polyesters , Polymers , Phosphates
2.
Carbohydr Polym ; 329: 121775, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286528

ABSTRACT

Nanocellulose (NC), a one-dimensional nanomaterial, is considered a sustainable material for water and wastewater purification because of its promising hydrophilic surface and mechanical characteristics. In this regard, nanostructured membranes comprising NC and two-dimensional (2D) nanomaterials emerged as advanced membranes for efficient and sustainable water purification. This article critically reviews the recent progress on NC-2D nanostructured membranes for water and wastewater treatment. The review highlights the main techniques employed to fabricate NC-2D nanostructured membranes. The physicochemical properties, including hydrophilicity, percent porosity, surface roughness, structure, and mechanical and thermal stability, are summarized. The key performance indicators such as permeability, rejection, long operation stability, antifouling, and interaction mechanisms are thoroughly discussed to evaluate the role of NC and 2D nanomaterials. Finally, summary points and future development work are highlighted to overcome the challenges for potential practical applications. This review contributes to the design and development of advanced membranes to solve growing water pollution concerns in a sustainable manner.

3.
Int J Biol Macromol ; 259(Pt 1): 129056, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159689

ABSTRACT

This work describes the preparation of a novel biopolymer hydrogel based on acid whey, cellulose derivatives and polyvinyl alcohol (PVA). The hydrogel was prepared and characterized with the aim of producing an environmentally-friendly soil amendment to increase water retention capacity of the soil. The findings showed considerable swelling properties of the hydrogels depending on the PVA content and crosslinking density. The samples with PVA in a concentration 2.5 % and 5 % were more rigid, the gel fraction increased with a subsequently decrease in their swelling capacity. The hydrogels crosslinked with 15 % of citric acid demonstrated a constant swelling ratio (SR) of around 500 % within 10 swelling/drying cycles. The hydrogels crosslinked with 10 % citric acid and supplemented with 1 % of PVA showed SR of 1000-1400 % caused by less crosslinked polymer network and increased pore volume for water uptake. It was found that hydrogel with a higher gel fraction had a stable structure. Supplementing PVA at 5 % extended the period of decomposition of the hydrogel material by almost 60 % in the soil environment and soil humidity was maintained for longer. Applying 2 % of the hydrogel 5PVA to soil increased the water retention capacity by 19 %.


Subject(s)
Hydrogels , Polyvinyl Alcohol , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Whey , Soil , Polysaccharides , Water , Whey Proteins , Citric Acid
4.
Polymers (Basel) ; 15(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37688125

ABSTRACT

The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study. The results show that nanofibers of fumed silica exhibited an aggregated, highly porous structure, whereas nanofibers of mesoporous silica had a spherical morphology. Both silica nanoparticles had a significant effect on the hydrophilic properties of PLA nanofiber surfaces. The liquid fractions were investigated to gauge the encapsulation efficiency (EE) and loading efficiency (LE) of AMI, demonstrating 66% EE and 52% LE for nanofibers of fumed silica compared to nanofibers of mesoporous silica nanoparticles (52% EE and 12.7% LE). The antibacterial activity of the AMI-loaded nanofibers was determined by the Kirby-Bauer Method. These results demonstrated that the PLA-based silica nanofibers effectively enhanced the antibacterial properties against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.

5.
Discov Nano ; 18(1): 38, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37382704

ABSTRACT

In this study, novel Trojan particles were engineered for direct delivery of doxorubicin (DOX) and miR-34a as model drugs to the lungs to raise local drug concentration, decrease pulmonary clearance, increase lung drug deposition, reduce systemic side effects, and overcome multi-drug resistance. For this purpose, targeted polyelectrolyte nanoparticles (tPENs) developed with layer-by-layer polymers (i.e., chitosan, dextran sulfate, and mannose-g-polyethyleneimine) were spray dried into a multiple-excipient (i.e., chitosan, leucine, and mannitol). The resulting nanoparticles were first characterized in terms of size, morphology, in vitro DOX release, cellular internalization, and in vitro cytotoxicity. tPENs showed comparable cellular uptake levels to PENs in A549 cells and no significant cytotoxicity on their metabolic activity. Co-loaded DOX/miR-34a showed a greater cytotoxicity effect than DOX-loaded tPENs and free drugs, which was confirmed by Actin staining. Thereafter, nano-in-microparticles were studied through size, morphology, aerosolization efficiency, residual moisture content, and in vitro DOX release. It was demonstrated that tPENs were successfully incorporated into microspheres with adequate emitted dose and fine particle fraction but low mass median aerodynamic diameter for deposition into the deep lung. The dry powder formulations also demonstrated a sustained DOX release at both pH values of 6.8 and 7.4.

6.
Int J Biol Macromol ; 245: 125544, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37356682

ABSTRACT

The polymeric cytisine-enriched fibers based on poly(3-hydroxybutyrate) were obtained using electrospinning method. The biocompatibility study, advanced thermal analysis and release of cytisine from the poly(3-hydroxybutyrate) fibers were carried out. The nanofibers' morphology was evaluated by scanning electron microscopy. The formation and description of phases during the thermal processes of fibers by the advanced thermal analysis were examined. The new quantitative thermal analysis of polymeric fibers with cytisine phases based on vibrational, solid and liquid heat capacities was presented. The apparent heat capacity of fibers was measured using the standard differential scanning calorimetry. The quantitative analysis allowed for the study of the glass transition and melting/crystallization process. The mobile amorphous fraction, degree of crystallinity and rigid amorphous fraction were determined depending on the thermal history of semicrystalline polymeric fibers. Furthermore, the cytisine dissolution behaviour was studied. It was observed that the kinetic of the release from polymeric nanofiber is delayed than for the marketed product. The immunosafety of the tested polymeric nanofibers with cytisine was confirmed by the Food and Drug Agency Guidance as well as the European Medicines Agency. The polymeric matrix with cytisine seems to be a promising candidate for the prolonged release formulation.


Subject(s)
Nanofibers , Polymers , Delayed-Action Preparations/chemistry , 3-Hydroxybutyric Acid , Polymers/chemistry , Nanofibers/chemistry , Calorimetry, Differential Scanning
7.
Polymers (Basel) ; 15(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37242817

ABSTRACT

This manuscript details the preparation and characterization of a renewable biocomposite material intended as a soil conditioner based on low-molecular-weight poly(lactic acid) (PLA) and residual biomass (wheat straw and wood sawdust). The swelling properties and biodegradability of the PLA-lignocellulose composite under environmental conditions were evaluated as indicators of its potential for applications in soil. Its mechanical and structural properties were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Results showed that the incorporation of lignocellulose waste material into PLA increased the swelling ratio of the biocomposite by up to 300%. The application of the biocomposite of 2 wt% in soil enhanced its capacity for water retention by 10%. In addition, the cross-linked structure of the material proved to be capable of swelling and deswelling repeatedly, indicating its good reusability. Incorporating lignocellulose waste in the PLA enhanced its stability in the soil environment. After 50 days of the experiment, almost 50% of the sample had degraded in the soil.

8.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677979

ABSTRACT

This paper presents an attempt to improve the properties of poly(3-hydroxybutyrate) (P3HB) using linear aliphatic polyurethane (PU400) and organomodified montmorillonite (MMT)-(Cloisite®30B). The nanostructure of hybrid nanobiocomposites produced by extrusion was analyzed by X-ray diffraction and transmission electron microscopy, and the morphology was analyzed by scanning electron microscopy. In addition, selected mechanical properties and thermal properties were studied by thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC. The interactions of the composite ingredients were indicated by FT IR spectroscopy. The effect of the amount of nanofiller on the properties of prepared hybrid nanobiocomposites was noted. Moreover, the non-equilibrium and equilibrium thermal parameters of nanobiocomposites were established based on their thermal history. Based on equilibrium parameters (i.e., the heat of fusion for the fully crystalline materials and the change in the heat capacity at the glass transition temperature for the fully amorphous nanobiocomposites), the degree of crystallinity and the mobile and rigid amorphous fractions were estimated. The addition of Cloisite®30B and aliphatic polyurethane to the P3HB matrix caused a decrease in the degree of crystallinity in reference to the unfilled P3HB. Simultaneously, an increase in the amorphous phase contents was noted. A rigid amorphous fraction was also denoted. Thermogravimetric analysis of the nanocomposites was also carried out and showed that the thermal stability of all nanocomposites was higher than that of the unfilled P3HB. An additional 1% mass of nanofiller increased the degradation temperature of the nanocomposites by about 30 °C in reference to the unfilled P3HB. Moreover, it was found that obtained hybrid nanobiocomposites containing 10 wt.% of aliphatic polyurethane (PU400) and the smallest amount of nanofiller (1 wt.% of Cloisite®30B) showed the best mechanical properties. We observed a desirable decrease in hardness of 15%, an increase in the relative strain at break of 60% and in the impact strength of 15% of the newly prepared nanobiocomposites with respect to the unfiled P3HB. The produced hybrid nanobiocomposites combined the best features induced by the plasticizing effect of polyurethane and the formation of P3HB-montmorillonite-polyurethane (P3HB-PU-MMT) adducts, which resulted in the improvement of the thermal and mechanical properties.

9.
Molecules ; 27(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296639

ABSTRACT

Three porous matrices based on poly(lactic acid) are proposed herein for the controlled release of amikacin. The materials were fabricated by the method of spraying a surface liquid. Description is given as to the possibility of employing a modifier, such as a silica nanocarrier, for prolonging the release of amikacin, in addition to using chitosan to improve the properties of the materials, e.g., stability and sorption capacity. Depending on their actual composition, the materials exhibited varied efficacy for drug loading, as follows: 25.4 ± 2.2 µg/mg (matrices with 0.05% w/v of chitosan), 93 ± 13 µg/mg (with 0.08% w/v SiO2 amikacin modified nanoparticles), and 96 ± 34 µg/mg (matrices without functional additives). An in vitro study confirmed extended release of the drug (amikacin, over 60 days), carried out in accordance with the mathematical Kosmyer-Pepas model for all the materials tested. The matrices were also evaluated for their effectiveness in inhibiting the growth of bacteria such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Concurrent research was conducted on the transdermal absorption, morphology, elemental composition, and thermogravimetric properties of the released drug.


Subject(s)
Amikacin , Chitosan , Amikacin/pharmacology , Silicon Dioxide , Porosity , Delayed-Action Preparations , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa , Escherichia coli
10.
Int J Biol Macromol ; 212: 85-96, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35561864

ABSTRACT

A set of renewable and biodegradable hydrogels based on acid whey and cellulose derivatives blended with poly(lactic acid) (PLA) were designed as eco-friendly biopolymeric material for sustainable agricultural applications. The physico-chemical properties of the hydrogel were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and rheological measurements. The effect of the whey/polysaccharide/PLA hydrogel on soil quality improvement (water retention study, biodegradability, loading capacity and release of the fertilizers) and the growth pattern of Raphanus sativus and Phaseolus vulgaris has been also studied. The addition of PLA has been found to improve mechanical properties of the hydrogel. The introduction of 20% wt PLA extended decomposition time of hydrogels by 25% which makes the material more stable in the environment and maintaining the soil humidity for longer. The increasing the amount of PLA led to a rise in hydrogel viscosity brought about better entrapment efficiency of the fertilizers (86-92% for KNO3 and 87-96% for urea, resp.) compared to control (82% for KNO3 and 85% for urea, resp.). The novel hydrogels with swelling ratio of up to 500% showed potential as a sustainable water reservoir for plants improving water retention capacity of the soil by 30%.


Subject(s)
Hydrogels , Soil , Fertilizers , Hydrogels/chemistry , Polyesters , Polysaccharides , Soil/chemistry , Urea/chemistry , Water/chemistry , Whey , Whey Proteins
11.
ACS Appl Mater Interfaces ; 14(12): 14654-14667, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35302368

ABSTRACT

Bio-based and biodegradable packaging combined with chemical sensors and indicators has attracted great attention as they can provide protection combined with information on the actual freshness of foodstuffs. In this study, we present an effective, biodegradable, mostly bio-sourced material ideal for sustainable packaging that can also be used as a smart indicator of ammonia (NH3) vapor and food spoilage. The developed material comprises a blend of poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) loaded with curcumin (CCM), which is fabricated via the scalable techniques of melt extrusion and compression molding. Due to the structural similarity of PLA and PPC, they exhibited good compatibility and formed hydrogen bonds within their blends, as proven by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis confirmed that the blends were thermally stable at the used processing temperature (180 °C) with minimal crystallinity. The rheological and mechanical properties of the PLA/PPC blends were easily tuned by changing the ratio of the biopolymers. Supplementing the PLA/PCC samples with CCM resulted in efficient absorption of UV radiation, yet the transparency of the films was preserved (T700 ∼ 68-84%). The investigation of CCM extract in ethanol with the DPPH• assay demonstrated that the samples could also provide effective antioxidant action, due to the tunable release of the CCM. Analyses for water vapor and oxygen permeability showed that the PPC improved the barrier properties of the PLA/PPC blends, while the presence of CCM did not hinder barrier performance. The capacity for real-time detection of NH3 vapor was quantified using the CIELab color space analysis. A change in color of the sample from a yellowish shade to red was observed by the naked eye. Finally, a film of PLA/PPC/CCM was successfully applied as a sticker indicator to monitor the spoilage of shrimps over time, demonstrating an evident color change from yellow to light orange, particularly for the PPC-containing blend. The developed system, therefore, has the potential to serve as a cost-effective, easy-to-use, nondestructive, smart indicator for food packaging, as well as a means for NH3 gas monitoring in industrial and environmental applications.


Subject(s)
Curcumin , Calorimetry, Differential Scanning , Food Packaging/methods , Polyesters/chemistry , Steam
12.
J Environ Health Sci Eng ; 19(2): 1347-1360, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34900271

ABSTRACT

BACKGROUND: This research paper focuses on removing of arsenic from contaminated water via a nanofibrous polymeric microfiltration membrane, applied in prospective combination with an inorganic sorbent based on iron oxide hydroxide FeO(OH). MATERIALS AND METHODS: Nanofibrous materials were prepared by electrospinning from polyurethane selected by an adsorption test. The chemical composition (FTIR), morphology (SEM, porometry) and hydrophilicity (contact angle) of the prepared nanostructured material were characterized. The process of eliminating arsenic from the contaminated water was monitored by atomic absorption spectroscopy (AAS). The adsorption efficiency of the nanofibrous material and the combination with FeO(OH) was determined, the level of arsenic anchorage on the adsorption filter was assessed by a rinsing test and the selectivity of adsorption in arsenic contaminated mineral water was examined. RESULTS: It was confirmed that the hydrophilic aromatic polyurethane of ester type PU918 is capable of capturing arsenic by complexation on nitrogen in its polymer chains. The maximum As removal efficiency was around 62 %. Arsenic was tightly anchored to the polymeric adsorbent. The adsorption process was sufficiently selective. Furthermore, it was found that the addition of even a small amount of FeO(OH) (0.5 g) to the nanofiber filter would increase the efficiency of As removal by 30 %. CONCLUSIONS: The presented results showed that an adsorption filter based on a polyurethane nanostructured membrane added with an inorganic adsorbent FeO(OH) is a suitable way for the elimination of arsenic from water. However, it is necessary to ensure perfect contact between the surface of the nanostructure and the filtered medium.

13.
Nanotechnology ; 33(7)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34727533

ABSTRACT

This study focuses on the adsorption kinetics of four highly potent sex hormones (estrone (E1), 17ß-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3)), present in water reservoirs, which are considered a major cause of fish feminization, low sperm count in males, breast and ovarian cancer in females induced by hormonal imbalance. Herein, electrospun polymeric nanostructures were produced from cellulose acetate, polyamide, polyethersulfone, polyurethanes (918 and elastollan), and polyacrylonitrile (PAN) to simultaneously adsorbing these estrogenic hormones in a single step process and to compare their performance. These nanofibers possessed an average fiber diameter in the range 174-330 nm and their specific surface area ranged between 10.2 and 20.9 m2g-1. The adsorption-desorption process was investigated in four cycles to determine the effective reusability of the adsorption systems. A one-step high-performance liquid chromatography technique was developed to detect and quantify concurrently each hormone present in the solution. Experimental data were obtained to determine the adsorption kinetics by applying pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Findings showed that E1, E2 and EE2 best fitted pseudo-second-order kinetics, while E3 followed pseudo-first-order kinetics. It was found that polyurethane Elastollan nanofibers had maximum adsorption capacities of 0.801, 0.590, 0.736 and 0.382 mg g-1for E1, E2, EE2 and E3, respectively. In addition, the results revealed that polyurethane Elastollan nanofibers had the highest percentage efficiency of estrogens removal at ∼58.9% due to its strong hydrogen bonding with estrogenic hormones, while the least removal efficiency for PAN at ∼35.1%. Consecutive adsorption-desorption cycles demonstrated that polyurethane maintained the best efficiency, even after being repeatedly used four times compared to the other polymers. Overall, the findings indicate that all the studied nanostructures have the potential to be effective adsorbents for concurrently eradicating such estrogens from the environment.


Subject(s)
Electrochemical Techniques/methods , Endocrine Disruptors , Estradiol Congeners , Nanofibers/chemistry , Water Pollutants, Chemical , Adsorption , Endocrine Disruptors/chemistry , Endocrine Disruptors/metabolism , Endocrine Disruptors/pharmacokinetics , Estradiol Congeners/chemistry , Estradiol Congeners/metabolism , Estradiol Congeners/pharmacokinetics , Kinetics , Membranes, Artificial , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/pharmacokinetics , Water Purification
14.
Polymers (Basel) ; 13(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34641090

ABSTRACT

This study describes the development of a renewable and biodegradable biopolymer-based hydrogel for application in agriculture and horticulture as a soil conditioning agent and for release of a nutrient or fertilizer. The novel product is based on a combination of cellulose derivatives (carboxymethylcellulose and hydroxyethylcellulose) cross-linked with citric acid, as tested at various concentrations, with acid whey as a medium for hydrogel synthesis in order to utilize the almost unusable by-product of the dairy industry. The water uptake of the hydrogel was evaluated by swelling tests under variations in pH, temperature and ion concentration. Its swelling capacity, water retention and biodegradability were investigated in soil to simulate real-world conditions, the latter being monitored by the production of carbon dioxide during the biodegradation process by gas chromatography. Changes in the chemical structure and morphology of the hydrogels during biodegradation were assessed using Fourier transform infrared spectroscopy and scanning electron microscopy. The ability of the hydrogel to hold and release fertilizers was studied with urea and KNO3 as model substances. The results not only demonstrate the potential of the hydrogel to enhance the quality of soil, but also how acid whey can be employed in the development of a soil conditioning agent and nutrient release products.

15.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34500624

ABSTRACT

This study investigated the effect of natural antioxidants inherent to beetroot (Beta vulgaris var. Vulgaris) on the ageing of environmentally friendly plastics. Certain properties were examined in this context, comprising thermal, mechanical, and morphological properties. A visual evaluation of relevant changes in the given polymers (polylactide and polycaprolactone) was conducted during an ageing test in a UV chamber (45 °C, 70% humidity) for 720 h. The films were prepared by a casting process, in which samples with the extract of beetroot were additionally incorporated in a common filler (bentonite), this serving as a carrier for the extract. The results showed the effect of the incorporated antioxidant, which was added to stabilize the biodegradable films. Its efficiency during the ageing test in the polymers tended to exceed or be comparable to that of the reference sample.


Subject(s)
Antioxidants/chemistry , Beta vulgaris/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Polyesters/chemistry , Bentonite/chemistry , Plastics/chemistry , Stress, Physiological/drug effects , Vegetables/chemistry
16.
Mol Pharm ; 18(8): 2986-2996, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34196555

ABSTRACT

The aim of this study was to fabricate novel microparticles (MPs) for efficient and long-term delivery of amikacin (AMI). The emulsification method proposed for encapsulating AMI employed low-molecular-weight poly(lactic acid) (PLA) and poly(lactic acid-co-polyethylene glycol) (PLA-PEG), both supplemented with poly(vinyl alcohol) (PVA). The diameters of the particles obtained were determined as less than 30 µm. Based on an in-vitro release study, it was proven that the MPs (both PLA/PVA- and PLA-PEG/PVA-based) demonstrated long-term AMI release (2 months), the kinetics of which adhered to the Korsmeyer-Peppas model. The loading efficiencies of AMI in the study were determined at the followings levels: 36.5 ± 1.5 µg/mg for the PLA-based MPs and 106 ± 32 µg/mg for the PLA-PEG-based MPs. These values were relatively high and draw parallels with studies published on the encapsulation of aminoglycosides. The MPs provided antimicrobial action against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae bacterial strains. The materials were also comprehensively characterized by the following methods: differential scanning calorimetry; gel permeation chromatography; scanning electron microscopy; Fourier transform infrared spectroscopy-attenuated total reflectance; energy-dispersive X-ray fluorescence; and Brunauer-Emmett-Teller surface area analysis. The findings of this study contribute toward discerning new means for conducting targeted therapy with polar, broad spectrum antibiotics.


Subject(s)
Amikacin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Drug Carriers/chemistry , Drug Compounding/methods , Lactates/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Amikacin/chemistry , Anti-Bacterial Agents/chemistry , Capsules , Drug Liberation , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Molecular Weight , Particle Size , Polyvinyl Alcohol/chemistry , Pseudomonas aeruginosa/drug effects , Solubility , Staphylococcus aureus/drug effects
17.
Polymers (Basel) ; 13(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802770

ABSTRACT

This study explores the feasibility of modifying the surface liquid spraying method to prepare porous bioscaffolds intended for wound dressing applications. For this purpose, gentamicin sulfate was loaded into polylactide-polyvinyl alcohol bioscaffolds as a highly soluble (hygroscopic) model drug for in vitro release study. Moreover, the influence of inorganic salts including NaCl (10 g/L) and KMnO4 (0.4 mg/L), and post-thermal treatment (T) (80 °C for 2 min) on the properties of the bioscaffolds were studied. The bioscaffolds were characterized by scanning electron microscopy, Fourier Transform infrared spectroscopy, and differential scanning calorimetry. In addition, other properties including porosity, swelling degree, water vapor transmission rate, entrapment efficiency, and the release of gentamicin sulfate were investigated. Results showed that high concentrations of NaCl (10 g/L) in the aqueous phase led to an increase of around 68% in the initial burst release due to the increase in porosity. In fact, porosity increased from 68.1 ± 1.2 to 94.1 ± 1.5. Moreover, the thermal treatment of the Polylactide-polyvinyl alcohol/NaCl (PLA-PVA/NaCl) bioscaffolds above glass transition temperature (Tg) reduced the initial burst release by approximately 11% and prolonged the release of the drug. These results suggest that thermal treatment of polymer above Tg can be an efficient approach for a sustained release.

18.
Polymers (Basel) ; 13(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809428

ABSTRACT

This study investigates antibacterial polymer composites based on polypropylene as modified by caraway essential oil at various concentrations, the latter immobilized on a talc. The caraway essential oil is incorporated in the polypropylene by a thermoplastic processing method. Analysis of the morphology of the composites was carried out by scanning electron microscopy. The chemical composition of the caraway essential oil in addition to its efficiency of incorporation and release were evaluated by GC/MS and Pyrolysis-GC/MS techniques, respectively. Determination was made as to the influence of such incorporation on thermal and tensile properties of the samples, while antibacterial activity was evaluated through conducting disk diffusion tests and measurement with adherence to the ISO 22196:2011 standard. It was found that incorporating the caraway essential oil in the samples did not affect the homogeneity of the thermoplastic-processed composites at any studied concentration. Stress-strain analysis confirmed the plasticizing effect of the essential oil in the polypropylene matrix, in addition to which, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) analysis revealed that the prepared compositions with essential oil exhibited similar thermal properties to neat polypropylene. Results indicated significant antibacterial activity against Staphylococcus aureus and Escherichia coli at the concentration of essential oil of 4.9 ± 0.2 wt% and higher.

19.
Molecules ; 26(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916814

ABSTRACT

The alkaline milieu of chronic wounds severely impairs the therapeutic effect of antibiotics, such as rifampicin; as such, the development of new drugs, or the smart delivery of existing drugs, is required. Herein, two innovative polyelectrolyte nanoparticles (PENs), composed of an amphiphilic chitosan core and a polycationic shell, were synthesized at alkaline pH, and in vitro performances were assessed by 1H NMR, elemental analysis, FT-IR, XRD, DSC, DLS, SEM, TEM, UV/Vis spectrophotometry, and HPLC. According to the results, the nanostructures exhibited different morphologies but similar physicochemical properties and release profiles. It was also hypothesized that the simultaneous use of the nanosystem and an antioxidant could be therapeutically beneficial. Therefore, the simultaneous effects of ascorbic acid and PENs were evaluated on the release profile and degradation of rifampicin, in which the results confirmed their synergistic protective effect at pH 8.5, as opposed to pH 7.4. Overall, this study highlighted the benefits of nanoparticulate development in the presence of antioxidants, at alkaline pH, as an efficient approach for decreasing rifampicin degradation.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Rifampin/pharmacology , Calorimetry, Differential Scanning , Chromatography, High Pressure Liquid , Dextran Sulfate/chemistry , Drug Liberation , Hydrogen-Ion Concentration , Nanoparticles/ultrastructure , Particle Size , Polyelectrolytes/chemistry , Proton Magnetic Resonance Spectroscopy , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Static Electricity , X-Ray Diffraction
20.
J Photochem Photobiol B ; 215: 112124, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33486396

ABSTRACT

Camptothecin (CPT), an alkaloid, was first discovered from plants and has potent anti-tumor activity. Since then, CPT analogs (namely Irinotecan and Topotecan) have been approved by the FDA for cancer treatments. Curcumin, on the other hand, is a widely used photosensitizer in photodynamic therapy (PDT) treatment. In our previous work, we have reported a straightforward strategy to construct a drug self-delivery system in which two-molecular species Irinotecan and Curcumin can self-assembly into a complex of ion pairs, namely ICN, through intermolecular non-covalent interactions. We found that ICN has slightly better chemotherapy efficacy than its individual components with much fewer side effects. In this paper, we aim to combine the chemotherapy and the PDT of ICN to further improve its anti-tumor performance. The efficient cellular uptake of ICNs was observed by confocal microscopy. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay was used to detect the generation of singlet oxygen species. We found that the cell viability was 9% with both chemotherapy and PDT, and 31% with chemotherapy alone for the case with an ICN concentration of 10 µM, which demonstrated that the anti-tumor efficacy against the HT-29 cancer cell line was enhanced substantially with the combination therapy strategy. The study with an in vivo mouse model has further verified that the chemo-PDT dual therapy can inhibit tumor growth by 84% and 18.8% comparing with the control group and the chemotherapy group, respectively. Our results demonstrated that the new strategy using self-assembly and carrier-free nanoparticles with their chemo-PDT dual therapy may provide new opportunities to develop future combinatorial therapy methods in treating cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Camptothecin/chemistry , Camptothecin/pharmacology , Diarylheptanoids/chemistry , Photochemotherapy/methods , Apoptosis/drug effects , Apoptosis/radiation effects , Combined Modality Therapy , HT29 Cells , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Intracellular Space/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...