Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 12(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28922578

ABSTRACT

Vaccinations are among the most potent tools to fight infectious diseases. However, cross-reactions are an ongoing problem and there is an urgent need to fully understand the mechanisms of the immune response. For the development of a methodological workflow, the linear epitopes in the immune response to the tetanus toxin is investigated in sera of 19 vaccinated Europeans applying epitope mapping with peptide arrays. The most prominent epitope, appearing in nine different sera (923 IHLVNNESSEVIVHK937 ), is investigated in a substitution analysis to identify the amino acids that are crucial for the binding of the corresponding antibody species - the antibody fingerprint. The antibody fingerprints of different individuals are compared and found to be strongly conserved (929 ExxEVIVxK937 ), which is astonishing considering the randomness of their development. Additionally, the corresponding antibody species is isolated from one serum with batch chromatography using the amino acid sequence of the identified epitope and the tetanus specificity of the isolated antibody is verified by ELISA. Studying antibody fingerprints with peptide arrays should be transferable to any kind of humoral immune response toward protein antigens. Furthermore, antibody fingerprints have shown to be highly disease-specific and, therefore, can be employed as reliable biomarkers enabling the study of cross-reacting antigens.


Subject(s)
Epitope Mapping/methods , Epitopes/chemistry , Epitopes/immunology , Tetanus Toxin/chemistry , Tetanus Toxin/immunology , Amino Acid Sequence , Amino Acid Substitution , Amino Acids , Antibodies/immunology , Antibody Specificity , Antigens , Cross Reactions/immunology , Humans , Immunoglobulin G , Models, Molecular , Peptide Mapping , Protein Array Analysis/methods , Protein Conformation
2.
Nat Commun ; 7: 11844, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27296868

ABSTRACT

Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).


Subject(s)
Combinatorial Chemistry Techniques , Oligopeptides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Carbodiimides/chemistry , Fluorenes/chemistry , Hemagglutinins/chemistry , Hydroxybenzoate Ethers/chemistry , Lasers , Methacrylates/chemistry , Oligopeptides/chemistry , Polyethylene Glycols/chemistry
3.
Microarrays (Basel) ; 3(4): 245-62, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-27600347

ABSTRACT

In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...