Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabet Med ; 30(12): 1500-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23909286

ABSTRACT

AIMS: The intrauterine metabolic environment might have a programming effect on offspring body composition. We aimed to explore associations of maternal variables of glucose and lipid metabolism during pregnancy, as well as cord blood insulin, with infant growth and body composition up to 2 years post-partum. METHODS: Data of pregnant women and their infants came from a randomized controlled trial designed to investigate the impact of nutritional fatty acids on adipose tissue development in the offspring. Of the 208 pregnant women enrolled, 118 infants were examined at 2 years. In the present analysis, maternal fasting plasma insulin, homeostasis model assessment of insulin resistance and serum triglycerides measured during pregnancy, as well as insulin in umbilical cord plasma, were related to infant growth and body composition assessed by skinfold thickness measurements and abdominal ultrasonography up to 2 years of age. RESULTS: Maternal homeostasis model assessment of insulin resistance at the 32nd week of gestation was significantly inversely associated with infant lean body mass at birth, whereas the change in serum triglycerides during pregnancy was positively associated with ponderal index at 4 months, but not at later time points. Cord plasma insulin correlated positively with birthweight and neonatal fat mass and was inversely associated with body weight gain up to 2 years after multiple adjustments. Subsequent stratification by gender revealed that this relationship with weight gain was stronger, and significant only in girls. CONCLUSIONS: Cord blood insulin is inversely associated with subsequent infant weight gain up to 2 years and this seems to be more pronounced in girls.


Subject(s)
Body Weight , Fatty Acids/metabolism , Fetal Blood/metabolism , Insulin Resistance , Insulin/metabolism , Mothers , Triglycerides/blood , Adult , Birth Weight , Body Composition , Dietary Supplements , Female , Humans , Infant, Newborn , Maternal Nutritional Physiological Phenomena , Pregnancy , Skinfold Thickness , Weight Gain
2.
Eur J Clin Nutr ; 67(3): 282-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23340492

ABSTRACT

BACKGROUND/OBJECTIVE: Evidence is accumulating that the long-chain PUFA (LCPUFA) are associated with offspring growth and body composition. We investigated the relationship between LCPUFAs in red blood cells (RBCs) of pregnant women/breastfeeding mothers and umbilical cord RBCs of their neonates with infant growth and body composition ≤ 1 year of age. SUBJECTS/METHODS: In an open-label randomized, controlled trial, 208 healthy pregnant women received a dietary intervention (daily supplementation with 1200 mg n-3 LCPUFAs and dietary counseling to reduce arachidonic acid (AA) intake) from the 15th week of gestation until 4 months of lactation or followed their habitual diet. Fatty acids of plasma phospholipids (PLs) and RBCs from maternal and cord blood were determined and associated with infant body weight, body mass index (BMI), lean body mass and fat mass assessed by skinfold thickness measurements and ultrasonography. RESULTS: Dietary intervention significantly reduced the n-6/n-3 LCPUFA ratio in maternal and cord-blood plasma PLs and RBCs. Maternal RBCs docosahexaenoic acid (DHA), n-3 LCPUFAs and n-6 LCPUFAs at the 32nd week of gestation were positively related to birth weight. Maternal n-3 LCPUFAs, n-6 LCPUFAs and AA were positively associated with birth length. Maternal RBCs AA and n-6 LCPUFAs were significantly negatively related to BMI and Ponderal Index at 1 year postpartum, but not to fat mass. CONCLUSION: Maternal DHA, AA, total n-3 LCPUFAs and n-6 LCPUFAs might serve as prenatal growth factors, while n-6 LCPUFAs also seems to regulate postnatal growth. The maternal n-6/n-3 LCPUFA ratio does not appear to have a role in adipose tissue development during early postnatal life.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/administration & dosage , Fatty Acids, Omega-6/blood , Feeding Behavior , Fetus/drug effects , Birth Weight/drug effects , Body Composition , Breast Feeding , Dietary Supplements , Erythrocytes/chemistry , Erythrocytes/drug effects , Female , Fetal Blood/chemistry , Fetal Blood/drug effects , Fetus/metabolism , Fish Oils/administration & dosage , Humans , Infant , Infant, Newborn , Lactation , Maternal Nutritional Physiological Phenomena , Phospholipids/blood , Pregnancy , Skinfold Thickness
SELECTION OF CITATIONS
SEARCH DETAIL
...