Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 569(7758): E11, 2019 May.
Article in English | MEDLINE | ID: mdl-31073228

ABSTRACT

Change history: In the Methods section of this Letter, there were formatting errors to the equations of motion using the Heisenberg picture; see accompanying Amendment for further details. This has been corrected online.

2.
Nature ; 568(7752): 378-381, 2019 04.
Article in English | MEDLINE | ID: mdl-30996319

ABSTRACT

High-speed optical telecommunication is enabled by wavelength-division multiplexing, whereby hundreds of individually stabilized lasers encode information within a single-mode optical fibre. Higher bandwidths require higher total optical power, but the power sent into the fibre is limited by optical nonlinearities within the fibre, and energy consumption by the light sources starts to become a substantial cost factor1. Optical frequency combs have been suggested to remedy this problem by generating numerous discrete, equidistant laser lines within a monolithic device; however, at present their stability and coherence allow them to operate only within small parameter ranges2-4. Here we show that a broadband frequency comb realized through the electro-optic effect within a high-quality whispering-gallery-mode resonator can operate at low microwave and optical powers. Unlike the usual third-order Kerr nonlinear optical frequency combs, our combs rely on the second-order nonlinear effect, which is much more efficient. Our result uses a fixed microwave signal that is mixed with an optical-pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to work with microwave powers that are three orders of magnitude lower than those in commercially available devices. We emphasize the practical relevance of our results to high rates of data communication. To circumvent the limitations imposed by nonlinear effects in optical communication fibres, one has to solve two problems: to provide a compact and fully integrated, yet high-quality and coherent, frequency comb generator; and to calculate nonlinear signal propagation in real time5. We report a solution to the first problem.

3.
Opt Express ; 22(25): 30795-806, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607028

ABSTRACT

Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.

4.
Opt Express ; 22(25): 30934-42, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607042

ABSTRACT

We present our experiments on refractometric sensing with ultrahigh-Q, crystalline, birefringent magnesium fluoride (MgF2) whispering gallery mode resonators. The difference to fused silica which is most commonly used for sensing experiments is the small refractive index of MgF2 which is very close to that of water. Compared to fused silica this leads to more than 50% longer evanescent fields and a 4.25 times larger sensitivity. Moreover the birefringence amplifies the sensitivity difference between TM and TE type modes which will enhance sensing experiments based on difference frequency measurements. We estimate the performance of our resonators and compare them with fused silica theoretically and present experimental data showing the interferometrically measured evanescent field decay and the sensitivity of mm-sized MgF2 whispering gallery mode resonators immersed in water. These data show reasonable agreement with the developed theory. Furthermore, we observe stable Q factors in water well above 1 × 108.

5.
Opt Express ; 21(20): 23942-9, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24104305

ABSTRACT

The usual configuration of uniaxial whispering gallery mode resonators is a disk shaped geometry where the optic axis points along the symmetry axis, a so called z-cut resonator. Recently x-cut resonators, where the optic axis lies in the equatorial plane, became of interest as they enable extremely broadband second harmonic generation. In this paper we report on the properties of a more generalized system, the so called angle-cut resonator, where the optic axis exhibits an arbitrary angle against the symmetry axis. We show experimentally that the modal structure and quality factors are similar to common resonators but that the polarization properties differ quite significantly: due to the asymmetry the polarization depends on the equatorial position and is, in general, elliptical.

SELECTION OF CITATIONS
SEARCH DETAIL
...