Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 341(2): 361-8, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15907883

ABSTRACT

To facilitate drug discovery directed toward platelet-specific targets, we developed a platelet isolation and fluorophore-loading method that yields functionally responsive platelets in which we were able to detect agonist-induced calcium flux using a microfluidics-based screening platform. The platelet preparation protocol was designed to minimize preparation-induced platelet activation and to optimize signal strength. Measurement of platelet activation, as monitored by ratiometric determination of agonist-induced calcium flux in fluor-loaded human platelets, was optimized in a macrosample cuvette format in preparation for detection in a microfluidic chip-based assay. For the microfluidic device used in these studies, a cell density of 1 to 2 x 10(6) platelets per milliliter and a nominal flow rate of 5 to 10 nl per second provided optimal event resolution of 5 to 20 platelets traversing the detection volume per unit time. Platelets responded in a dose-dependent manner to adenosine diphosphate and protease-activating peptide (PAR) 1 thrombin receptor-activating peptide (TRAP). The work presented here constitutes proof-of-principle experiments demonstrating the enabling application of a microfluidic device to conduct high-throughput signaling studies and drug discovery screening against human platelet targets.


Subject(s)
Blood Platelets/drug effects , Calcium/metabolism , Drug Evaluation, Preclinical/methods , Microfluidic Analytical Techniques , Adenosine Diphosphate/pharmacology , Blood Platelets/physiology , Calcium Signaling/drug effects , Humans , Peptides/pharmacology , Receptor, PAR-1/agonists
2.
J Med Chem ; 46(11): 2177-86, 2003 May 22.
Article in English | MEDLINE | ID: mdl-12747789

ABSTRACT

The adenylyl cyclases (ACs) are a family of intracellular enzymes associated with signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the so-called purine binding site (P-site) of the enzyme followed by metal-mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known, and unique isoform combinations are expressed in a tissue-specific manner. The development of isoform-specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of unique signal transduction inhibitors. To develop novel AC inhibitors, we have chosen an approach to inhibitor design utilizing an adenine ring system joined to a metal-coordinating hydroxamic acid via various linkers. Previous work in our group has validated this approach and identified novel inhibitors that possess an adenine ring joined to a metal-coordinating hydroxamic acid through flexible acyclic linkers (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 3085-3088). Subsequent studies have focused on the introduction of conformational restrictions into the tether of the inhibitors with the goal of increasing potency (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 3089-3092). Building upon the favorable spatial positioning of the adenine and hydroxamate groups coupled with potentially favorable entropic factors, the unit joining the carbocycle to the hydroxamate was explored further and a stereochemical-based SAR was elucidated, leading to a new series of highly potent AC inhibitors.


Subject(s)
Adenylyl Cyclase Inhibitors , Chelating Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Hydroxamic Acids/chemical synthesis , Isoenzymes/antagonists & inhibitors , Adenylyl Cyclases/chemistry , Cell Line , Chelating Agents/chemistry , Chelating Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Isoenzymes/chemistry , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...