Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(15): 10397-10406, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38557003

ABSTRACT

van der Waals heterostructures of two-dimensional materials have unveiled frontiers in condensed matter physics, unlocking unexplored possibilities in electronic and photonic device applications. However, the investigation of wide-gap, high-κ layered dielectrics for devices based on van der Waals structures has been relatively limited. In this work, we demonstrate an easily reproducible synthesis method for the rare-earth oxyhalide LaOBr, and we exfoliate it as a 2D layered material with a measured static dielectric constant of 9 and a wide bandgap of 5.3 eV. Furthermore, our research demonstrates that LaOBr can be used as a high-κ dielectric in van der Waals field-effect transistors with high performance and low interface defect concentrations. Additionally, it proves to be an attractive choice for electrical gating in excitonic devices based on 2D materials. Our work demonstrates the versatile realization and functionality of 2D systems with wide-gap and high-κ van der Waals dielectric environments.

2.
Materials (Basel) ; 17(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38255536

ABSTRACT

The chalcogenides of p-block elements constitute a significant category of materials with substantial potential for advancing the field of electronic and optoelectronic devices. This is attributed to their exceptional characteristics, including elevated carrier mobility and the ability to fine-tune band gaps through solid solution formation. These compounds exhibit diverse structures, encompassing both three-dimensional and two-dimensional configurations, the latter exemplified by the compound In2Se3. Sesqui-chalcogenides were synthesized through the direct reaction of highly pure elements within a quartz ampoule. Their single-phase composition was confirmed using X-ray diffraction, and the morphology and chemical composition were characterized using scanning electron microscopy. The compositions of all six materials were also confirmed using X-ray photoelectron spectroscopy and Raman spectroscopy. This investigation delves into the thermodynamic properties of indium and gallium sesqui-chalcogenides. It involves low-temperature heat capacity measurements to evaluate standard entropies and Tian-Calvet calorimetry to elucidate the temperature dependence of heat capacity beyond the reference temperature of 298.15 K, as well as the enthalpy of formation assessed from DFT calculations.

3.
Small Methods ; 8(5): e2300609, 2024 May.
Article in English | MEDLINE | ID: mdl-38158388

ABSTRACT

Recent studies dedicated to layered van der Waals crystals have attracted significant attention to magnetic atomically thin crystals offering unprecedented opportunities for applications in innovative magnetoelectric, magneto-optic, and spintronic devices. The active search for original platforms for the low-dimensional magnetism study has emphasized the entirely new magnetic properties of two dimensional (2D) semiconductor CrSBr. Herein, for the first time, the electrochemical exfoliation of bulk CrSBr in a non-aqueous environment is demonstrated. Notably, crystal cleavage governed by the structural anisotropy occurred along two directions forming atomically thin and few-layered nanoribbons. The exfoliated material possesses an orthorhombic crystalline structure and strong optical anisotropy, showing the polarization dependencies of Raman signals. The antiferromagnetism exhibited by multilayered CrSBr gives precedence to ferromagnetic ordering in the revealed CrSBr nanostructures. Furthermore, the potential application of CrSBr nanoribbons is pioneered for electrochemical photodetector fabrication and demonstrates its responsivity up to 30 µA cm-2 in the visible spectrum. Moreover, the CrSBr-based anode for lithium-ion batteries exhibited high performance and self-improving abilities. This anticipates that the results will pave the way toward the future study of CrSBr and practical applications in magneto- and optoelectronics.

4.
Polymers (Basel) ; 15(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37959979

ABSTRACT

The topic of modification of magnesium oxychloride cement (MOC) using specific functional additives is very much pronounced in the research of alternative building materials. This study deals with the co-doping of MOC by 1D and 2D carbon nanomaterials in order to improve its mechanical properties while using tannic acid (TA) as a surfactant. Furthermore, the effect of TA on MOC also improves its water resistance. As a filler, three size fractions of standard quartz sand are used. The proposed types of MOC-based composites show promising results considering their mechanical, macro- and microstructural, chemical, and hygric properties. The use of 1D and 2D nanoadditives and their mixture enables the improvement in the flexural strength and particularly the softening coefficient, which is the durability parameter characterizing the resistance of the prepared materials to water. After immersion in water for 24 h, the compressive strength of all tested specimens of modified composites was higher than that of the reference composite. Quantitatively, the developed co-doped composites show mechanical parameters comparable to or even better than those of commonly used Portland cement-based materials while maintaining high environmental efficiency. This indicates their potential use as an environmentally friendly alternative to Portland cement-based products.

5.
ACS Appl Mater Interfaces ; 14(30): 34867-34874, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35856643

ABSTRACT

Black phosphorus (BP) has been among the most widely explored materials in recent years because of its exceptional properties. A vapor transport method using tin and iodide as mineralizers was used to synthesize large crystals which can be used for fundamental physical characterization including electrical and heat transport and heat capacity. This method is compared to other reported procedures (high-pressure crystal growth and mercury catalysis) which are broadly used and the most dominant procedures for the obtainment of bulk layered BP. In addition, we have investigated any possible impurities which could have been introduced by synthesis and their possible incorporation into BP and their influence on the physical properties of BP.

6.
Colloids Surf B Biointerfaces ; 217: 112618, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35738076

ABSTRACT

Drug depot systems have traditionally relied on the spontaneous dissolution and diffusion of drugs or prodrugs from a reservoir with constant exposure to the surrounding physiological fluids. While this is appropriate for clinical scenarios that require constant plasma concentration of the drug over time, there are also situations where multiple bursts of the drug at well-defined time intervals are preferred. This work presents a drug depot system that enables repeated on-demand release of antibiotics in precise doses, controlled by an external radiofrequency magnetic field. The remotely controlled depot system consists of composite microcapsules with a core-shell structure. The core contains micronized drug particles embedded in a low-melting hydrophobic matrix. The shell is formed by a hydrogel with immobilised magnetic nanoparticles that facilitate local heat dissipation after exposure to a radiofrequency magnetic field. When the melting point of the core material is locally exceeded, the embedded drug particles are mobilised and their surface is exposed to the external aqueous phase. It is shown that drug release can be controlled in an on/off manner by a chosen sequence and duration of radiofrequency pulses. The capacity of the depot system is shown to be significantly higher than that of purely diffusion-controlled systems containing a pre-dissolved drug. The functionality of the depot system is demonstrated in vitro for the specific case of norfloxacin acting on E. coli.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Drug Liberation , Escherichia coli , Hydrogels/chemistry , Nanoparticles/chemistry
7.
Inorg Chem ; 61(9): 4092-4101, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35191302

ABSTRACT

High-entropy materials, with complex compositions and unique cocktail characteristics, have recently drawn significant attention. Additionally, a family of sodium super ion conductors (NASICONs)-structured phosphates in energy storage areas shows a comprehensive application for traditional alkaline ion batteries and, in particular, solid-state electrolytes. However, there is no precedent in fabricating this kind of NASICON-type high-entropy phase. Here, we report the successful fabrication of two well-crystallized high-entropy phosphates, namely, Na3(Ti0.2V0.2Mn0.2Cr0.2Zr0.2)2(PO4)3 (HE-N3M2P3) and Na(Ti0.2V0.2Mn0.2Cr0.2Zr0.2)2PO4Ox (HE-NMP). The prepared materials in which the transition metals (TMs) of Ti, V, Mn, Cr, and Zr occupy the same 12c Wykoff position can form a structure analogous to R3̅c Na3V2(PO4)3 that is carefully determined by X-ray diffraction, neutron diffraction, and transmission electron microscopy. Further, their performance for sodium ion batteries and sodium-based solid-state electrolytes was evaluated. The HE-N3M2P3 might exhibit a promising electrochemical performance for sodium storage in terms of its structure resembling that of Na3V2(PO4)3. Meanwhile, the HE-NMP shows considerable electrochemical activity with numerous broad redox ranges during extraction and insertion of Na+, related to the coexistence of several TM elements. The evaluated temperature-dependent ionic conductivity for HE-NMP solid electrolyte varies from 10-6 to 10-5 S cm-1 from room temperature to 398.15 K, offering high potential for energy storage applications as a new high-entropy system.

8.
Materials (Basel) ; 15(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35160865

ABSTRACT

Thanks to the unique properties of graphite oxides and graphene oxide (GO), this material has become one of the most promising materials that are widely studied. Graphene oxide is not only a precursor for the synthesis of thermally or chemically reduced graphene: researchers revealed a huge amount of unique optical, electronic, and chemical properties of graphene oxide for many different applications. In this review, we focus on the structure and characterization of GO, graphene derivatives prepared from GO and GO applications. We describe GO utilization in environmental applications, medical and biological applications, freestanding membranes, and various composite systems.

9.
ACS Nano ; 16(1): 351-367, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34939404

ABSTRACT

The engineering of the structural and morphological properties of nanomaterials is a fundamental aspect to attain desired performance in energy storage/conversion systems and multifunctional composites. We report the synthesis of room temperature-stable metallic rutile VO2 (VO2 (R)) nanosheets by topochemically transforming liquid-phase exfoliated VSe2 in a reductive Ar-H2 atmosphere. The as-produced VO2 (R) represents an example of two-dimensional (2D) nonlayered materials, whose bulk counterparts do not have a layered structure composed by layers held together by van der Waals force or electrostatic forces between charged layers and counterbalancing ions amid them. By pretreating the VSe2 nanosheets by O2 plasma, the resulting 2D VO2 (R) nanosheets exhibit a porous morphology that increases the material specific surface area while introducing defective sites. The as-synthesized porous (holey)-VO2 (R) nanosheets are investigated as metallic catalysts for the water splitting reactions in both acidic and alkaline media, reaching a maximum mass activity of 972.3 A g-1 at -0.300 V vs RHE for the hydrogen evolution reaction (HER) in 0.5 M H2SO4 (faradaic efficiency = 100%, overpotential for the HER at 10 mA cm-2 = 0.184 V) and a mass activity (calculated for a non 100% faradaic efficiency) of 745.9 A g-1 at +1.580 V vs RHE for the oxygen evolution reaction (OER) in 1 M KOH (overpotential for the OER at 10 mA cm-2 = 0.209 V). By demonstrating proof-of-concept electrolyzers, our results show the possibility to synthesize special material phases through topochemical conversion of 2D materials for advanced energy-related applications.

10.
Phys Rev Lett ; 127(9): 097401, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506201

ABSTRACT

We report the direct observation of strong coupling between magnons and phonons in a two-dimensional antiferromagnetic semiconductor FePS_{3}, via magneto-Raman spectroscopy at magnetic fields up to 30 Tesla. A Raman-active magnon at 121 cm^{-1} is identified through Zeeman splitting in an applied magnetic field. At a field-driven resonance with a nearby phonon mode, a hybridized magnon-phonon quasiparticle is formed due to strong coupling between the two modes. We develop a microscopic model of the strong coupling in the two-dimensional magnetic lattice, which enables us to elucidate the nature of the emergent quasiparticle. Our polarized Raman results directly show that the magnons transfer their spin angular momentum to the phonons and generate phonon spin through the strong coupling.

11.
Adv Mater ; 33(36): e2101618, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34302389

ABSTRACT

Phonons with chirality determine the optical helicity of inelastic light scattering processes due to their nonzero angular momentum. Here it is shown that 2D magnetic CrBr3 hosts chiral phonons at the Brillouin-zone center. These chiral phonons are linear combinations of the doubly-degenerate Eg phonons, and the phonon eigenmodes exhibit clockwise and counterclockwise rotational vibrations corresponding to angular momenta of l = ± 1. Such Eg chiral phonons completely switch the polarization of incident circularly polarized light. On the other hand, the non-degenerate non-chiral Ag phonons display a giant magneto-optical effect under an external out-of-plane magnetic field, rotating the plane of polarization of the scattered linearly polarized light. The corresponding degree of polarization of the scattered light changes from 91% to -68% as the magnetic field strength increases from 0 to 5 T. In contrast, the chiral Eg modes display no field dependence. The results lay a foundation for the study of phonon chirality and magneto-optical phenomena in 2D magnetic materials, as well as their related applications, such as the phonon Hall effect, topological photonics, and Raman lasing.

12.
ACS Appl Mater Interfaces ; 13(26): 30806-30817, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34161061

ABSTRACT

Optoelectronics and sensing devices are of enormous importance in our modern lives, which has propelled the scientific community to explore new two-dimensional (2D) nanomaterials to meet the requirements of future devices. Herein, we present the exfoliation of palladium thiophosphate (Pd3(PS4)2) by mechanical shear force exfoliation. The Pd3(PS4)2-based photoelectrochemical (PEC) device demonstrated self-powered broadband photodetection in the range of 385-940 nm with an unprecedented responsivity of 2 A W-1 and a specific detectivity of about 8.67 × 1011 cm Hz1/2 W-1 under the illumination of 420 nm LED light. The crucial parameters such as photoresponsivity, response, and recovery time of the device can be controlled by an externally applied voltage and the analyte concentration. Moreover, Pd3(PS4)2-based vapor-sensing devices exhibited frequency-dependent selective acetone sensing in the presence of other organic vapors with an ultrafast response and a recovery time of less than 1 s. Finally, the photocatalytic activity of Pd3(PS4)2 was revealed, which can be attributed to the presence of an appropriate band alignment with the catalytic activity of Pd. This novel material with the aforementioned fascinating phenomenon will pave the way toward practical future applications in optoelectronics and sensing.

13.
Materials (Basel) ; 14(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498565

ABSTRACT

In this contribution, composite materials based on magnesium oxychloride cement (MOC) with multi-walled carbon nanotubes (MWCNTs) used as an additive were prepared and characterized. The prepared composites contained 0.5 and 1 wt.% of MWCNTs, and these samples were compared with the pure MOC Phase 5 reference. The composites were characterized using a broad spectrum of analytical methods to determine the phase and chemical composition, morphology, and thermal behavior. In addition, the basic structural parameters, pore size distribution, mechanical strength, stiffness, and hygrothermal performance of the composites, aged 14 days, were also the subject of investigation. The MWCNT-doped composites showed high compactness, increased mechanical resistance, stiffness, and water resistance, which is crucial for their application in the construction industry and their future use in the design and development of alternative building products.

14.
ACS Appl Mater Interfaces ; 12(43): 48598-48613, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32960559

ABSTRACT

Photoelectrochemical (PEC) systems represent powerful tools to convert electromagnetic radiation into chemical fuels and electricity. In this context, two-dimensional (2D) materials are attracting enormous interest as potential advanced photo(electro)catalysts and, recently, 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts. In this work, we use density functional theory calculations to theoretically investigate the photocatalytic activity of single-/few-layer GeSe nanoflakes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in pH conditions ranging from 0 to 14. Our simulations show that GeSe nanoflakes with different thickness can be mixed in the form of nanoporous films to act as nanoscale tandem systems, in which the flakes, depending on their thickness, can operate as HER- and/or OER photocatalysts. On the basis of theoretical predictions, we report the first experimental characterization of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H2SO4 (pH 0.3), 1 M KCl (pH 6.5), and 1 M KOH (pH 14). The films of the GeSe nanoflakes are fabricated by spray coating GeSe nanoflakes dispersion in 2-propanol obtained through liquid-phase exfoliation of synthesized orthorhombic (Pnma) GeSe bulk crystals. The PEC properties of the GeSe nanoflakes are used to design PEC-type photodetectors, reaching a responsivity of up to 0.32 AW-1 (external quantum efficiency of 86.3%) under 455 nm excitation wavelength in acidic electrolyte. The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching that of self-powered commercial UV-Vis photodetectors. The obtained results inspire the use of 2D GeSe in proof-of-concept water photoelectrolysis cells.

15.
Materials (Basel) ; 13(12)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604933

ABSTRACT

Copper nanoparticles are of great interest in various applications, such as catalysis, cooling fluids, conductive inks or for their antibacterial activity. In this paper, the thermal behavior of copper nanoparticles was studied using thermogravimetry, differential thermal analysis and differential scanning calorimetry. Original Cu samples as well as the products of oxidation were analysed by X-ray diffraction, scanning/transmission electron microscopy and energy dispersive spectroscopy. A step-by-step oxidation mechanism during the oxidation of Cu nano-powders was observed. The Cu-nano oxidation starts slightly above 150 °C when bulk copper does not yet react. The dominant oxidation product in the first step is Cu2O while CuO was identified as the final state of oxidation. Our results confirm an easier oxidation process of Cu-nano than Cu-micro particles, which must be attributed to kinetic not thermodynamic aspects of oxidation reactions.

16.
Materials (Basel) ; 13(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344756

ABSTRACT

The aim of this paper is to prepare nano-functionalized ceramic foam filters from carbon-bonded alumina. The carbon-bonded filters were produced via the Schwartzwalder process using a two-step approach. The prepared ceramic foam filters were further coated using graphene oxide. Graphene oxide was prepared by the modified Tour method. The C/O of the graphene oxide ratio was evaluated by XPS, EDS and elemental analysis (EA). The amount and type of individual oxygen functionalities were characterized by XPS and Raman spectroscopy. The microstructure was studied by TEM, and XRD was used to evaluate the interlayer distance. In the next step, filters were coated by graphene oxide using dip-coating. After drying, the prepared composite filters were used for the purification of the water containing lead, zinc and cadmium ions. The efficiency of the sorption was very high, suggesting the potential use of these materials for the treatment of wastewater from heavy metals.

17.
Materials (Basel) ; 13(3)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046098

ABSTRACT

In this paper, magnesium oxychloride cement with stoichiometry 3Mg(OH)2∙MgCl2∙8H2O (MOC 3-1-8) was prepared and characterized. The phase composition and kinetics of formation were studied by X-ray diffraction (XRD) and Rietveld analysis of obtained diffractograms. The chemical composition was analyzed using X-ray fluorescence (XRF) and energy dispersive spectroscopy (EDS). Furthermore, scanning electron microscopy (SEM) was used to study morphology, and Fourier Transform Infrared (FT-IR) spectroscopy was also used for the analysis of the prepared sample. In addition, thermal stability was tested using simultaneous thermal analysis (STA) combined with mass spectroscopy (MS). The obtained data gave evidence of the fast formation of MOC 3-1-8, which started to precipitate rapidly. As the length of the time of ripening increased, the amount of MgO decreased, while the amount of MOC 3-1-8 increased. The fast formation of the MOC 3-1-8 phase at an ambient temperature is important for its application in the production of low-energy construction materials, which corresponds with the challenges of a sustainable building industry.

18.
ACS Appl Mater Interfaces ; 12(6): 7381-7391, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31942787

ABSTRACT

Black phosphorus is currently among the most explored two-dimensional (2D) materials. Currently, the synthesis methods are dominantly based on vapor-phase growth of black phosphorus. In this manuscript, we demonstrate large-scale synthesis of black phosphorus by rapid high-pressure transition of red phosphorus. The high-pressure conversion of red phosphorus led to high-density nanocrystalline black phosphorus ceramics. The resulting material was explored in detail including structural and morphological characterization in addition to thermal and electrical transport and basic thermophysical properties. The nanocrystalline black phosphorus can be employed for large-scale production of stable few/single-layer black phosphorus colloidal solutions in various solvents.

19.
Materials (Basel) ; 12(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618830

ABSTRACT

In our theoretical study, the enhanced solubility of CuO nanoparticles in water saturated by air is predicted based on a simple thermodynamic model. CuO is considered in the form of nanoparticles with various shapes. The interfacial energy of a solid CuO/dilute aqueous solution interface was assessed by applying the average CuO surface energy and contact angle of a sessile drop of water. The equilibrium CuO solubility was calculated using Gibbs energy minimization technique. For the smallest spherical nanoparticles considered in this work (r = 2 nm), the solubility is significantly higher than the solubility of bulk material. In the case of cylindrical nanoparticles, the solubility increase is even more considerable. The CuO spherical nanoparticles solubility was also calculated using the Ostwald-Freundlich equation which is known to overestimate the solubility as discussed in this contribution.

20.
Materials (Basel) ; 12(19)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569669

ABSTRACT

Y2BaCuO5 often occurs as an accompanying phase of the well-known high-temperature superconductor YBa2Cu3O7 (also known as YBCO). Y2BaCuO5, easily identifiable due to its characteristic green coloration, is often referred to as 'green phase' or 'Y-211'. In this contribution, Y2BaCuO5 phase was studied in detail with a focus on its thermal and thermodynamic properties. Energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed in the study of sample's morphology and chemical composition. XRD data were further analyzed and lattice parameters refined by Rietveld analysis. Simultaneous thermal analysis was employed to study thermal stability. Particle size distribution was analyzed by laser diffraction. Finally, thermodynamic properties, namely heat capacity and relative enthalpy, were measured by drop calorimetry, differential scanning calorimetry (DSC), and physical properties measurement system (PPMS). Enthalpy of formation was assessed from ab-initio DFT calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...