Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(50): 14237-14242, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911777

ABSTRACT

Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1-2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle.


Subject(s)
Iron/metabolism , Seawater/analysis , Seawater/microbiology , Siderophores/metabolism , Adaptation, Physiological , Biological Availability , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Genes, Bacterial , Iron/pharmacokinetics , Ligands , Pacific Ocean , Phylogeny , Water Microbiology
2.
Nature ; 523(7559): 200-3, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26156374

ABSTRACT

Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by hydrothermal vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of hydrothermal dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of hydrothermal dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this hydrothermal plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global hydrothermal dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of hydrothermal dissolved iron requires some means of physicochemical stabilization and indicate that hydrothermally derived iron sustains a large fraction of Southern Ocean export production.


Subject(s)
Hydrothermal Vents/chemistry , Metals/chemistry , Models, Theoretical , Seawater/chemistry , Pacific Ocean , Water Movements
3.
ISME J ; 9(1): 238-45, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24972068

ABSTRACT

Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles.


Subject(s)
Cyanobacteria/metabolism , Iron/metabolism , Nitrogen Fixation , Phosphorus/metabolism , Water Microbiology , Cyanobacteria/growth & development , Humans , Nitrogen/metabolism , Oceans and Seas , Seawater/microbiology
4.
Front Microbiol ; 2: 160, 2011.
Article in English | MEDLINE | ID: mdl-21886638

ABSTRACT

The Ross Sea is home to some of the largest phytoplankton blooms in the Southern Ocean. Primary production in this system has previously been shown to be iron limited in the summer and periodically iron and vitamin B(12) colimited. In this study, we examined trace metal limitation of biological activity in the Ross Sea in the austral spring and considered possible implications for vitamin B(12) nutrition. Bottle incubation experiments demonstrated that iron limited phytoplankton growth in the austral spring while B(12), cobalt, and zinc did not. This is the first demonstration of iron limitation in a Phaeocystis antarctica-dominated, early season Ross Sea phytoplankton community. The lack of B(12) limitation in this location is consistent with previous Ross Sea studies in the austral summer, wherein vitamin additions did not stimulate P. antarctica growth and B(12) was limiting only when bacterial abundance was low. Bottle incubation experiments and a bacterial regrowth experiment also revealed that iron addition directly enhanced bacterial growth. B(12) uptake measurements in natural water samples and in an iron fertilized bottle incubation demonstrated that bacteria serve not only as a source for vitamin B(12), but also as a significant sink, and that iron additions enhanced B(12) uptake rates in phytoplankton but not bacteria. Additionally, vitamin uptake rates did not become saturated upon the addition of up to 95 pM B(12). A rapid B(12) uptake rate was observed after 13 min, which then decreased to a slower constant uptake rate over the next 52 h. Results from this study highlight the importance of iron availability in limiting early season Ross Sea phytoplankton growth and suggest that rates of vitamin B(12) production and consumption may be impacted by iron availability.

5.
Proc Natl Acad Sci U S A ; 106(19): 7724-8, 2009 May 12.
Article in English | MEDLINE | ID: mdl-19416862

ABSTRACT

Osmium is one of the rarer elements in seawater, with typical concentration of approximately 10 x 10(-15) g g(-1) (5.3 x 10(-14) mol kg(-1)). The osmium isotope composition ((187)Os/(188)Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (approximately 1.3) and mantle/cosmic dust (approximately 0.13). Here, we show that the (187)Os/(188)Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (approximately 0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower (187)Os/(188)Os ratio (approximately 0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts.


Subject(s)
Air Pollutants/analysis , Osmium/analysis , Automobiles , Catalysis , Electrons , Environmental Monitoring/methods , Environmental Pollution , Mass Spectrometry/methods , Platinum/analysis , Rain , Snow
6.
Environ Sci Technol ; 36(21): 4600-7, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12433170

ABSTRACT

A shipboard-deployable, flow-injection (FI) based instrument for monitoring iron(II) in surface marine waters is described. It incorporates a miniature, low-power photon-counting head for measuring the light emitted from the iron(II)-catalyzed chemiluminescence (CL) luminol reaction. System control, signal acquisition, and data processing are performed in a graphical programming environment. The limit of detection for iron(II) is in the range 8-12 pmol L(-1) (based on 3 s of the blank), and the precision over the range 8-1000 pmol L(-1) varies between 0.9 and 7.6% (n = 4). Results from a day-night deployment during a north-to-south transect of the Atlantic Ocean and a daytime transect in the Sub-Antarctic Front are presented together with ancillary temperature, salinity, and irradiance data. The generic nature of the components used to assemble the instrument make the technology readily transferable to other laboratories and the modular construction makes it easy to adapt the system for use with other CL chemistries.


Subject(s)
Iron/analysis , Water Pollutants/analysis , Automation , Luminescent Measurements , Sensitivity and Specificity , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...