Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 52(37): 13181-13189, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37664901

ABSTRACT

We report the multi-step synthesis of the tetradentate 2-(naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole ligand (LTetra-ODA) along with its corresponding [FeII(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) complex, which is the first mononuclear 1,3,4-oxadiazole based Fe(II) spin crossover (SCO) complex, and its zinc analogue [ZnII(LTetra-ODA)(NCBH3)2]·0.5H2O (C2). The spin transition is followed by variable temperature (VT-) X-ray crystallography of [Fe(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) at 120 and 220 K. The magnetic susceptibility measurements on the bulk sample recorded from 2 to 300 K show that the complex exhibits a complete abrupt reversible spin transition with a T1/2 of 207 K. The loss of the lattice solvent methanol shifts the T1/2 slightly to around 210 K. The spin transition in solution for [Fe(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) was followed using the VT-1H-NMR Evans method in CD3CN, with a T1/2 of 357 K. Solid state VT luminescence studies provide some preliminary evidence of interplay of luminescence and spin transition in the [Fe(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) complex.

2.
Inorg Chem ; 62(31): 12423-12433, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37490422

ABSTRACT

New polymorphic modifications of double sulfates ß-AEu(SO4)2 (A-Rb+, Cs+) were obtained by the hydrothermal method, the structure of which differs significantly from the monoclinic modifications obtained earlier by solid-state methods. According to single-crystal diffraction data, it was found that the compounds crystallize in the orthorhombic system, space group Pnna, with parameters ß-RbEu(SO4)2: a = 9.4667(4) Å, b = 13.0786(5) Å, c = 5.3760(2) Å, V = 665.61(5) Å3; ß-CsEu(SO4)2: a = 9.5278(5) Å, b = 13.8385(7) Å, c = 5.3783(3) Å, V = 709.13(7) Å3. The asymmetric part of the unit cell contains one-half Rb+/Cs+ ion, one-half Eu3+ ion, both in special sites, and one SO42- ion. Both compounds exhibit nonlinear negative thermal expansion. According to the X-ray structural analysis and theoretical calculations, the polarizing effect of the alkali metal ion has a decisive influence on the demonstration of this phenomenon. Experimental indirect band gaps of ß-Rb and ß-Cs are 4.05 and 4.11 eV, respectively, while the direct band gaps are 4.48 and 4.54 eV, respectively. The best agreement with theoretical calculations is obtained using the ABINIT package employing PAW pseudopotentials with hybrid PBE0 functional, while norm-conserving pseudopotentials used in the frame of CASTEP code and LCAO approach in the Crystal package gave worse agreement. The properties of alkali ions also significantly affect the luminescent properties of the compounds, which leads to a strong temperature dependence of the intensity of the 5D0 → 7F4 transition in ß-CsEu(SO4)2 in contrast to much weaker dependence of this kind in ß-RbEu(SO4)2.

3.
Dalton Trans ; 51(38): 14673-14685, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36098070

ABSTRACT

A series of 15 lanthanide-containing coordination polymers, both 3D- and 2D-networks, as well as complexes of Ln-trichlorides with 3-(3-pyridyl)pyrazole (3-PyPzH), were synthesized. A large structural diversity is observed depending on the ligand content: 3∞[Ln(3-PyPzH)Cl3], Ln = Eu and Gd, of sra topology, 2∞[Sm(3-PyPzH)Cl3], 2∞[Ln2(3-PyPzH)3Cl6]·2solv, Ln = Eu3+, Tb3+, Dy3+, Ho3+ and Er3+, solv = Tol and MeCN, of sql topology and 2∞[Ln(3-PyPzH2)Cl4], Ln = La and Nd, of hcb topology with salt like complexes of the formula [(3-PyPzH2)][Ln(3-PyPzH)2Cl4], Ln = Eu, Tb, Dy and Ho. The products were characterized by single-crystal and powder X-ray diffraction, high-temperature X-ray diffraction, differential thermal analysis and thermogravimetry (DTA/TG) combined with mass spectrometry, differential scanning calorimetry (DSC), IR-spectroscopy, UV-visible spectrophotometry, photoluminescence spectroscopy, and magnetic susceptibility. Absorption spectroscopy shows ion-specific 4f-4f transitions that can be assigned to Sm3+, Eu3+, Dy3+, Ho3+ and Er3+ in a wide range from the UV-VIS to NIR region. An excellent antenna effect through ligand-metal energy transfer was observed in 2∞[Tb2(3-PyPzH)3Cl6]·2solv, leading to high efficiency of the luminescence indicated by a quantum yield up to 76%. Direct current magnetic susceptibility studies reveal the absence of interatomic interaction for Dy3+ and Er3+ and weak ferromagnetic interaction for Ho3+. Thermal analysis shows good stability up to 365 °C for 2∞[Ho2(3-PyPzH)3Cl6]·2MeCN.

4.
Molecules ; 27(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807213

ABSTRACT

Praseodymium sulfate was obtained by the precipitation method and the crystal structure was determined by Rietveld analysis. Pr2(SO4)3 is crystallized in the monoclinic structure, space group C2/c, with cell parameters a = 21.6052 (4), b = 6.7237 (1) and c = 6.9777 (1) Å, ß = 107.9148 (7)°, Z = 4, V = 964.48 (3) Å3 (T = 150 °C). The thermal expansion of Pr2(SO4)3 is strongly anisotropic. As was obtained by XRD measurements, all cell parameters are increased on heating. However, due to a strong increase of the monoclinic angle ß, there is a direction of negative thermal expansion. In the argon atmosphere, Pr2(SO4)3 is stable in the temperature range of T = 30-870 °C. The kinetics of the thermal decomposition process of praseodymium sulfate octahydrate Pr2(SO4)3·8H2O was studied as well. The vibrational properties of Pr2(SO4)3 were examined by Raman and Fourier-transform infrared absorption spectroscopy methods. The band gap structure of Pr2(SO4)3 was evaluated by ab initio calculations, and it was found that the valence band top is dominated by the p electrons of oxygen ions, while the conduction band bottom is formed by the d electrons of Pr3+ ions. The exact position of ZPL is determined via PL and PLE spectra at 77 K to be at 481 nm, and that enabled a correct assignment of luminescent bands. The maximum luminescent band in Pr2(SO4)3 belongs to the 3P0 → 3F2 transition at 640 nm.

5.
Chemistry ; 28(23): e202200881, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35352413

ABSTRACT

Invited for the cover of this issue are Klaus Müller-Buschbaum and co-workers at Giessen University. The image depicts an aluminium-based MOF as a novel material for the capture of iodine radioisotopes from a potential gas atmosphere exposure. Read the full text of the article at 10.1002/chem.202104171.


Subject(s)
Iodine , Cations , Humans , Iodides , Metals
6.
Chemistry ; 28(23): e202104171, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35179262

ABSTRACT

Eight cationic, two-dimensional metal-organic frameworks (MOFs) were synthesized in reactions of the group 13 metal halides AlBr3 , AlI3 , GaBr3 , InBr3 and InI3 with the dipyridyl ligands 1,2-di(4-pyridyl)ethylene (bpe), 1,2-di(4-pyridyl)ethane (bpa) and 4,4'-bipyridine (bipy). Seven of them follow the general formula 2 ∞ [MX2 (L)2 ]A, M=Al, In, X=Br, I, A- =[MX4 ]- , I- , I3 - , L=bipy, bpa, bpe. Thereby, the porosity of the cationic frameworks can be utilized to take up the heavy molecule iodine in gas-phase chemisorption vital for the capture of iodine radioisotopes. This is achieved by switching between I- and the polyiodide I3 - in the cavities at room temperature, including single-crystal-to-single-crystal transformation. The MOFs are 2D networks that exhibit (4,4)-topology in general or (6,3)-topology for 2 ∞ [(GaBr2 )2 (bpa)5 ][GaBr4 ]2 ⋅bpa. The two-dimensional networks can either be arranged to an inclined interpenetration of the cationic two-dimensional networks, or to stacked networks without interpenetration. Interpenetration is accompanied by polycatenation. Due to the cationic character, the MOFs require the counter ions [MX4 ]- , I- or I3 - counter ions in their pores. Whereas the [MX4 ]- , ions are immobile, iodide allows for chemisorption. Furthermore, eight additional coordination polymers and complexes were identified and isolated that elaborate the reaction space of the herein reported syntheses.

7.
Chemistry ; 27(67): 16634-16641, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34613634

ABSTRACT

Homoleptic, 3D coordination polymers of the formula 33 ∞ [Ln(3-PyPz)3 ] and 3 ∞ [Ln(4-PyPz)3 ], (3-PyPz)- =3-(3-pyridyl)pyrazolate anion, (4-PyPz)- =3-(4-pyridyl)pyrazolate anion, both C8 H6 N3 - , Ln=Sm, Eu, Gd, Tb, Dy, were obtained as highly luminescent frameworks by reaction of the lanthanide metals (Ln) with the aromatic heterocyclic amine ligands 3-PyPzH and 4-PyPzH. The compounds form two isotypic series of 3D coordination polymers and exhibit fair thermal stability up to 360 °C. The luminescence properties of all ten compounds were determined in the solid state, with an antenna effect through ligand-metal energy transfer leading to high efficiency of the luminescence displayed by good quantum yields of up to 74 %. The emission is mainly based on ion-specific lanthanide-dependent intra 4 f-4 f transitions for Tb3+ : green, Dy3+ : yellow, Sm3+ : orange-red, Eu3+ : red. For the Gd3+ -containing compounds, the yellow emission of ligand triplet-based phosphorescence is observed at room temperature and 77 K. Co doping of the Gd-containing frameworks with Eu3+ and Tb3+ allow further shifting of the chromaticity towards white light emission.

8.
Dalton Trans ; 49(23): 7774-7789, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32406435

ABSTRACT

A series of tris(pyrazolyl)borate mono-, di- and trinuclear complexes, [Tp2Ln]nX (Ln = Eu, Tb, Gd, Dy, Xn- = various mono-, bis- and tris(ß-diketonates) has been prepared. The Tb3+ and Dy3+ complexes are luminescent single molecular magnets (SMM) and exhibit luminescence quantum efficiencies up to 73% for the Tb3+ and 4.4% for the Dy3+ compounds. Similar Eu3+ complexes display bright emission only at lower temperatures. The Dy3+ and Tb3+ complexes possess SMM behavior in a non-zero dc field at low temperatures, while the polynuclear Dy3+ complexes also show slow magnetic relaxation even in zero dc field up to 8 K. Ueff-values determined from dynamic magnetic measurements were up to 31 and 6 cm-1 for the Dy3+ and Tb3+ complexes, respectively. It was found that within a series of Dy3+ and Tb3+ compounds, Ueff and luminescence quantum yields decreased with increasing nuclearity of the compounds and a shortening of the intramolecular Ln-Ln distance. ΔOrbach-values estimated from low-temperature luminescence spectra were significantly higher than those obtained from ac magnetic data, which may be due to involvement of additional processes in the relaxation mechanism (quantum tunneling, Raman, direct) reducing the energy barrier. Some of the Tb3+-compounds also display metal-centred electroluminescence, giving them potential as emitting layers in LEDs.

9.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 12): 1947-1951, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31871763

ABSTRACT

The title triclinic polymorph (Form I) of 1,4-bis-([2,2':6',2''-terpyridin]-4'-yl)benzene, C36H24N6, was formed in the presence of the Lewis acid yttrium trichloride in an attempt to obtain a coordination compound. The crystal structure of the ortho-rhom-bic polymorph (Form II), has been described previously [Fernandes et al. (2010 ▸). Acta Cryst. E66, o3241-o3242]. The asymmetric unit of Form I consists of half a mol-ecule, the whole mol-ecule being generated by inversion symmetry with the central benzene ring being located about a crystallographic centre of symmetry. The side pyridine rings of the 2,2':6',2''-terpyridine (terpy) unit are rotated slightly with respect to the central pyridine ring, with dihedral angles of 8.91 (8) and 10.41 (8)°. Opposite central pyridine rings are coplanar by symmetry, and the angle between them and the central benzene ring is 49.98 (8)°. The N atoms of the pyridine rings inside the terpy entities, N⋯N⋯N, lie in trans-trans positions. In the crystal, mol-ecules are linked by C-H⋯π and offset π-π inter-actions [inter-centroid distances are 3.6421 (16) and 3.7813 (16) Å], forming a three-dimensional structure.

10.
J Am Chem Soc ; 135(9): 3550-9, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23276227

ABSTRACT

Soluble gold precatalysts, aimed for homogeneous catalysis, under certain conditions may form nanoparticles, which dramatically change the mechanism and initiate different chemistry. The present study addresses the question of designing gold catalysts, taking into account possible interconversions and contamination at the homogeneous/heterogeneous system's interface. It was revealed that accurate localization of boundary experimental conditions for formation of molecular gold complexes in solution versus nucleation and growth of gold particles opens new opportunities for well-known gold chemistry. Within the developed concept, a series of practical procedures was created for efficient synthesis of soluble gold complexes with various phosphine ligands (R3P)AuCl (90-99% yield) and for preparation of different types of gold materials. The effect of the ligand on the particles growth in solution has been observed and characterized with high-resolution field-emission scanning electron microscopy (FE-SEM) study. Two unique types of nanostructured gold materials were prepared: hierarchical agglomerates and gold mirror composed of ultrafine smoothly shaped particles.


Subject(s)
Chlorides/chemistry , Gold Compounds/chemistry , Gold/chemistry , Phosphines/chemistry , Microscopy, Electron, Scanning , Molecular Structure , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...