Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38790969

ABSTRACT

Antibodies are protein molecules whose primary function is to recognize antigens. However, recent studies have demonstrated their ability to hydrolyze specific substrates, such as proteins, oligopeptides, and nucleic acids. In 2023, two separate teams of researchers demonstrated the proteolytic activity of natural plasma antibodies from COVID-19 convalescents. These antibodies were found to hydrolyze the S-protein and corresponding oligopeptides. Our study shows that for antibodies with affinity to recombinant structural proteins of the SARS-CoV-2: S-protein, its fragment RBD and N-protein can only hydrolyze the corresponding protein substrates and are not cross-reactive. By using strict criteria, we have confirmed that this proteolytic activity is an intrinsic property of antibodies and is not caused by impurities co-eluting with them. This discovery suggests that natural proteolytic antibodies that hydrolyze proteins of the SARS-CoV-2 virus may have a positive impact on disease pathogenesis. It is also possible for these antibodies to work in combination with other antibodies that bind specific epitopes to enhance the process of virus neutralization.

2.
Vaccines (Basel) ; 11(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37766170

ABSTRACT

The S-protein is the major antigen of the SARS-CoV-2 virus, against which protective antibodies are generated. The S-protein gene was used in adenoviral vectors and mRNA vaccines against COVID-19. While the primary function of antibodies is to bind to antigens, catalytic antibodies can hydrolyze various substrates, including nucleic acids, proteins, oligopeptides, polysaccharides, and some other molecules. In this study, antibody fractions with affinity for RBD and S-protein (RBD-IgG and S-IgG) were isolated from the blood of COVID-19 patients vaccinated with Sputnik V. The fractions were analyzed for their potential to hydrolyze 18-mer oligopeptides corresponding to linear fragments of the SARS-CoV-2 S-protein. Here, we show that the IgG antibodies hydrolyze six out of nine oligopeptides efficiently, with the antibodies of COVID-19-exposed donors demonstrating the most significant activity. The IgGs of control donors not exposed to SARS-CoV-2 were found to be inactive in oligopeptide hydrolysis. The antibodies of convalescents and vaccinated patients were found to hydrolyze oligopeptides in a wide pH range, with the optimal pH range between 6.5 and 7.5. The hydrolysis of most oligopeptides by RBD-IgG antibodies is inhibited by thiol protease inhibitors, whereas S-IgG active centers generally combine several types of proteolytic activities. Ca2+ ions increase the catalytic activity of IgG preparations containing metalloprotease-like active centers. Thus, the proteolytic activity of natural antibodies against the SARS-CoV-2 protein is believed to be due to the similarity of catalytic antibodies' active centers to canonical proteases. This work raises the question of the possible physiological role of proteolytic natural RBD-IgG and S-IgG resulting from vaccination and exposure to COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...