Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 42257, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186137

ABSTRACT

Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy.


Subject(s)
Myelin Sheath/metabolism , Peripheral Nervous System/metabolism , Polysaccharides/metabolism , Sulfates/metabolism , Sulfotransferases/metabolism , Animals , Anions , Axons/metabolism , Biocatalysis , Central Nervous System/metabolism , Mammals , Mice, Knockout , Models, Biological , Polysaccharides/chemistry , Sciatic Nerve/enzymology , Sciatic Nerve/pathology , Sulfotransferases/genetics , Carbohydrate Sulfotransferases
2.
J Neurosci Res ; 93(1): 1-18, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25213400

ABSTRACT

Human P0 is the main myelin glycoprotein of the peripheral nervous system. It can bind six different glycans, all linked to Asn(93) , the unique glycosylation site. Other myelin glycoproteins, also with a single glycosylation site (PMP22 at Asn(36) , MOG at Asn(31) ), bind only one glycan. The MAG has 10 glycosylation sites; the glycoprotein OMgp has 11 glycosylation sites. Aside from P0, no comprehensive data are available on other myelin glycoproteins. Here we review and analyze all published data on the physicochemical structure of the glycans linked to P0, PMP22, MOG, and MAG. Most data concern bovine P0, whose glycan moieties have an MW ranging from 1,294.56 Da (GP3) to 2,279.94 Da (GP5). The pI of glycosylated P0 protein varies from pH 9.32 to 9.46. The most charged glycan is MS2 containing three sulfate groups and one glucuronic acid; whereas the least charged one is the BA2 residue. All glycans contain one fucose and one galactose. The most mannose rich are the glycans MS2 and GP4, each of them has four mannoses; OPPE1 contains five N-acetylglucosamines and one sulfated glucuronic acid; GP4 contains one sialic acid. Furthermore, human P0 variants causing both gain and loss of glycosylation have been described and cause peripheral neuropathies with variable clinical severity. In particular, the substitution T(95) →M is a very common in Europe and is associated with a late-onset axonal neuropathy. Although peripheral myelin is made up largely of glycoproteins, mutations altering glycosylation have been described only in P0. This attractive avenue of research requires further study.


Subject(s)
Myelin Proteins/chemistry , Myelin Proteins/metabolism , Polysaccharides/metabolism , Animals , Chemical Phenomena , Humans , Myelin Sheath/metabolism
3.
J Neurosci Res ; 91(4): 479-93, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23339078

ABSTRACT

The shortest sequence of amino acids in protein containing functional and structural information is a "motif." To understand myelin protein functions, we intensively searched for motifs that can be found in myelin proteins. Some myelin proteins had several different motifs or repetition of the same motif. The most abundant motif found among myelin proteins was a myristoylation motif. Bovine MAG held 11 myristoylation motifs and human myelin basic protein held as many as eight such motifs. PMP22 had the fewest myristoylation motifs, which was only one; rat PMP22 contained no such motifs. Cholesterol recognition/interaction amino-acid consensus (CRAC) motif was not found in myelin basic protein. P2 protein of different species contained only one CRAC motif, except for P2 of horse, which had no such motifs. MAG, MOG, and P0 were very rich in CRAC, three to eight motifs per protein. The analysis of motifs in myelin proteins is expected to provide structural insight and refinement of predicted 3D models for which structures are as yet unknown. Analysis of motifs in mutant proteins associated with neurological diseases uncovered that some motifs disappeared in P0 with mutation found in neurological diseases. There are 2,500 motifs deposited in a databank, but 21 were found in myelin proteins, which is only 1% of the total known motifs. There was great variability in the number of motifs among proteins from different species. The appearance or disappearance of protein motifs after gaining point mutation in the protein related to neurological diseases was very interesting.


Subject(s)
Myelin Proteins/chemistry , Amino Acid Motifs , Animals , Cattle , Chickens , Databases, Nucleic Acid , Guinea Pigs , Humans , Mice , Myelin Proteins/genetics , Myelin Proteins/metabolism , Nervous System Diseases/genetics , Rabbits , Rats , Semliki forest virus/genetics , Semliki forest virus/metabolism , Sharks , Swine
4.
J Neurosci Res ; 89(6): 909-20, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21425316

ABSTRACT

Myelin membrane is a biological complex of glial cells origin; it is composed of 25% (w/w) proteins and 75% lipids, and more than 300 proteins are associated with central nervous system myelin (for peripheral nervous system myelin, such data are lacking). Myelin plays an important role in maintaining propagation of nerve signals. To uncover the nature of propagation phenomena, it is essential to study biochemistry of myelin proteins and lipids, myelin composition, and myelin structure. Nearly all myelin proteins are like antigens, causing clinically well-defined devastating diseases; multiple sclerosis and Guillain-Barré syndrome are two of them. In this article, a high-resolution study (1.8 Å) of porcine myelin P2 protein is presented. Myelin was purified from porcine intradural spinal roots, which were stored at -80°C for 10 years before myelin and P2 protein were purified (spinal roots were a gift of Prof. Kunio Kitamura, Saitama Medical School). The three-dimensional structural analysis uncovered embedded 18-carbons-long fatty acid. Some speculative interpretation is presented, to uncover how this ligand of fatty acid may form cholesterol ester and stabilize the myelin structure or form simple raft microdomain. Protein crystallography indicates that the ligand may be 18-carbons-long fatty acid. This is unlike previous work with mass spectrometry, in which three ligands were determined. In other protein crystallography-based studies of P2 (bovine), an oleic fatty acid was suggested, but, for recombinant (human) protein, palmitic acid was found. There is no fatty acid ligand in equine P2 protein.


Subject(s)
Fatty Acids/metabolism , Models, Chemical , Myelin P0 Protein/chemistry , Myelin P0 Protein/ultrastructure , Myelin Sheath/chemistry , Animals , Crystallography, X-Ray/methods , Ligands , Mass Spectrometry , Molecular Weight , Myelin Sheath/ultrastructure , Protein Binding , Protein Conformation , Proteomics , Spinal Nerve Roots/metabolism , Swine
5.
Anal Bioanal Chem ; 397(5): 1903-10, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20512566

ABSTRACT

Complementary collision-induced/electron capture dissociation Fourier-transform ion cyclotron resonance mass spectrometry was used to fully sequence the protein P2 myelin basic protein. It is an antigenic fatty-acid-binding protein that can induce experimental autoimmune neuritis: an animal model of Guillain-Barré syndrome, a disorder similar in etiology to multiple sclerosis. Neither the primary structure of the porcine variant, nor the fatty acids bound by the protein have been well established to date. A 1.8-A crystal structure shows but a bound ligand could not be unequivocally identified. A protocol for ligand extraction from protein crystals has been developed with subsequent gas chromatography MS analysis allowing determination that oleic, stearic, and palmitic fatty acids are associated with the protein. The results provide unique and general evidence of the utility of mass spectrometry for characterizing proteins from natural sources and generating biochemical information that may facilitate attempts to elucidate the causes for disorders such as demyelination.


Subject(s)
Fatty Acid-Binding Proteins/chemistry , Fatty Acids/chemistry , Mass Spectrometry/methods , Myelin P2 Protein/chemistry , Amino Acid Sequence , Animals , Crystallization , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Humans , Molecular Conformation , Molecular Sequence Data , Myelin P2 Protein/genetics , Myelin P2 Protein/metabolism , Protein Binding , Sequence Alignment , Swine
6.
Curr Med Chem ; 15(19): 1899-910, 2008.
Article in English | MEDLINE | ID: mdl-18691047

ABSTRACT

Myelin proteins of the central and peripheral nervous system range from very hydrophilic to extremely hydrophobic proteins. Their biological function and involvement in various clinically defined neurological diseases are well documented. In this review the myelin proteins will be compared with proteins of alphaviruses with emphasis on Semliki Forest Virus (strain pSP6-SFV4), to elucidate better the multiple function and the potential role in several neurological diseases. The main purpose of this review is to assist neuroscientists, neurochemists, neurologists, and other interested scientists in developing a better understanding on the information relating to myelin proteins referred in autoimmune diseases. Therefore, this review is focused on simple physiochemical background of proteins and structural aspect, which may be involved in autoimmunity. It is very unusual that few different a.a. sequences (epitops) induce indeed the same autoimmune reaction.


Subject(s)
Alphavirus/immunology , Autoimmunity , Myelin Proteins/immunology , Myelin Sheath/immunology , Myelin Sheath/virology , Animals , Central Nervous System/chemistry , Central Nervous System/immunology , Central Nervous System/virology , Humans , Myelin Proteins/chemistry , Myelin Sheath/chemistry
7.
J Sep Sci ; 29(18): 2810-5, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17305243

ABSTRACT

Artificial and highly selective antibodies (in the form of gel granules) against proteins can easily be synthesized by a simple, cost-effective imprinting technique [Liao, J.-L. et al., Chromatographia 1996, 42, 259-262]. Using the same method for synthesis of gel antibodies against viruses in combination with analysis by free zone electrophoresis in a rotating narrow bore tube we have shown that artificial gel antibodies against Semliki Forest Virus (wild type) can sense the difference between this virus and a mutant, although they differ in their chemical composition only by three amino acids in one of the three proteins on the surface of the virus particle. The reason for this extremely high resolution is explained by the fact that we use three types of selectivity: (i) shape selectivity (created by the close fit between the antigen and its imprint in the gel), (ii) bond selectivity in the contact area between the antigen and its imprint in the gel antibody, and (iii) charge selectivity, originating from slightly different structures or/and conformations of the antigens.


Subject(s)
Antibodies, Viral/chemistry , Electrophoresis/methods , Semliki forest virus/immunology
8.
J Struct Biol ; 142(2): 292-300, 2003 May.
Article in English | MEDLINE | ID: mdl-12713957

ABSTRACT

The P2 protein of peripheral nervous system myelin induces experimental allergic neuritis in rats, a model of Guillain-Barré syndrome in humans. Previous purification procedures have used acid extraction to obtain the protein in lipid-free form (LF-P2). Here, we have purified the P2 protein in lipid-bound form (LB-P2) by extracting myelin with the detergent CHAPS, followed by Cu(2+)-affinity column chromatography. All myelin lipids were present in the preparation as shown by high-performance thin-layer chromatography and mass spectrometry. The LB-P2 preparation, which differs from LF-P2 in solubility and in the secondary-structure composition, was dialyzed to remove unbound lipids and excess detergent and crystallized using the hanging-drop vapor diffusion technique. Crystals of lipid-bound P2 appeared usually very reproducibly within 2 weeks at pH 5.7 in polyethylene glycol 6000 (PEG6000) at concentrations of 20-30% (w/v), and larger crystals were obtained by additional sitting-drop crystallization. X-ray diffraction showed reflections up to 2.7A. The crystallization conditions (25-30% PEG6000, pH 5.0) and the unit cell dimensions (a = 94.5A, b = 94.5A, c=74.2A, alpha = beta = 90 degrees, gamma = 120 degrees ) of LB-P2 were different from those earlier described for LF-P2 (10% PEG4000, pH 3, and unit cell dimensions a = 91.8A, b = 99.5A, c = 56.5A, alpha = beta = gamma = 90.0 degrees ). It is important that P2 has been crystallized with specifically bound lipids; therefore, solving this new crystal structure will reveal details of this protein's behavior and role in the myelin sheath.


Subject(s)
Crystallization/methods , Lipids/chemistry , Myelin P2 Protein/chemistry , Animals , Crystallography, X-Ray , Histidine , Lipids/isolation & purification , Membrane Microdomains/chemistry , Membrane Proteins/chemistry , Myelin P2 Protein/isolation & purification , Protein Binding , Spectrometry, Mass, Electrospray Ionization , Spinal Nerve Roots/chemistry
9.
Protein Expr Purif ; 26(3): 368-77, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12460760

ABSTRACT

The preparation of a pure and homogeneous protein sample at proper concentration is a prerequisite for success when attempting their crystallization for structural determination. The detergents suitable for solubilization particularly of membrane proteins are not always the best for crystallization. Myelin of the peripheral nervous system of vertebrates is the example of a membrane for which neutral or "gentle" detergents are not even strong enough to solubilize its proteins. In contrast, sodium- or lithium-dodecyl sulfate is very effective. We solubilized myelin membrane in 2%(w/v) sodium dodecyl sulfate, followed by chromatographic purification of the hydrophobic myelin glycoproteins P0 and PASII/PMP22, and finally, we have exchanged the sodium dodecyl sulfate bound to protein for other neutral detergents using ceramic hydroxyapatite column. Theoretically, we should easily exchange sodium dodecyl sulfate for any neutral detergent, but for some of them, the solubility of myelin glycoproteins is low. To monitor the potential variability in the secondary structure of glycoproteins, we have used circular dichroism. Sodium dodecyl sulfate seems to be the appropriate detergent for the purpose of purification of very hydrophobic glycoproteins, since it can be easily exchanged for another neutral detergent.


Subject(s)
Crystallization/methods , Myelin P0 Protein/chemistry , Myelin Proteins/chemistry , Animals , Cattle , Circular Dichroism , Copper , Durapatite , Electrophoresis, Polyacrylamide Gel , Hydrophobic and Hydrophilic Interactions , Imidazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...