Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomic Med ; 12(1): e2360, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284451

ABSTRACT

BACKGROUND: Lynch syndrome represents one of the most common cancer predispositions worldwide and is caused by germline pathogenic variants (PV) in DNA mismatch repair (MMR) genes. We repeatedly identified a PV in the MMR gene PMS2, c.1831dup, accounting for 27% of all Swiss PMS2 PV index patients identified. Notably, 2/18 index patients had been diagnosed with colorectal cancer (CRC) before age 30. METHODS: In this study, we investigated if this PV could (i) represent a founder variant by haplotype analysis and (ii) be associated with a more severe clinical phenotype. RESULTS: Haplotype analysis identified a shared common region of about 0.7 Mb/1.3 cM in 13 (81%) out of 16 index patients. Genotype-phenotype correlations, combining data from the 18 Swiss and 18 literature-derived PMS2 c.1831dup PV index patients and comparing them to 43 Swiss index patients carrying other PMS2 PVs, indicate that the PMS2 c.1831dup variant may be associated with earlier (<50 y) age at CRC diagnosis (55% vs. 29%, respectively; p = 0.047). Notably, 30% (9/30) of cancers from c.1831dup carriers displayed atypical MMR protein expression patterns on immunohistochemistry. CONCLUSION: Our results suggest that the PMS2 c.1831dup PV represents a, probably ancient, founder mutation and is possibly associated with an earlier CRC diagnosis compared to other PMS2 PVs.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , Adult , Colorectal Neoplasms/genetics , Mismatch Repair Endonuclease PMS2/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Genotype , Genetic Association Studies
2.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162975

ABSTRACT

Basic helix-loop-helix (bHLH) transcription factors are evolutionarily conserved and structurally similar proteins important in development. The temporospatial expression of atonal bHLH transcription factor 7 (ATOH7) directs the differentiation of retinal ganglion cells and mutations in the human gene lead to vitreoretinal and/or optic nerve abnormalities. Characterization of pathogenic ATOH7 mutations is needed to understand the functions of the conserved bHLH motif. The published ATOH7 in-frame deletion p.(Arg41_Arg48del) removes eight highly conserved amino acids in the basic domain. We functionally characterized the mutant protein by expressing V5-tagged ATOH7 constructs in human embryonic kidney 293T (HEK293T) cells for subsequent protein analyses, including Western blot, cycloheximide chase assays, Förster resonance energy transfer fluorescence lifetime imaging, enzyme-linked immunosorbent assays and dual-luciferase assays. Our results indicate that the in-frame deletion in the basic domain causes mislocalization of the protein, which can be rescued by a putative dimerization partner transcription factor 3 isoform E47 (E47), suggesting synergistic nuclear import. Furthermore, we observed (i) increased proteasomal degradation of the mutant protein, (ii) reduced protein heterodimerization, (iii) decreased DNA-binding and transcriptional activation of a reporter gene, as well as (iv) inhibited E47 activity. Altogether our observations suggest that the DNA-binding basic domain of ATOH7 has additional roles in regulating the nuclear import, dimerization, and protein stability.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Nerve Tissue Proteins , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA , HEK293 Cells , Humans , Mutant Proteins , Nerve Tissue Proteins/metabolism
3.
J Pediatr Endocrinol Metab ; 32(11): 1299-1303, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31541602

ABSTRACT

Thyroid dyshormonogenesis (TDH) is characterized by the defective synthesis of thyroid hormones. We present a patient with congenital hypothyroidism (CH) who presented in newborn screening with elevated serum thyroid-stimulating hormone (TSH), decreased free thyroxine (fT4) and increased thyroglobulin (Tg) concentrations. Ultrasound scan revealed a properly structured thyroid gland. Treatment with L-thyroxine was initiated. At the age of 2 years, thyroxine replacement was stopped. The patient remained untreated until 6 years of age when TSH levels progressively increased and L-thyroxine treatment was restarted at a dose of 12.5 µg/day. Genetic analysis revealed a double heterozygosity for likely pathogenic variants of dual oxidase 2 (DUOX2) and thyroid stimulating hormone receptor (TSHR). Both genes were earlier shown to be associated with CH. In a literature review, our patient was compared to previously published patients with similar clinical characteristics, and a good genotype-phenotype correlation was identified.


Subject(s)
Dual Oxidases/genetics , Hypothyroidism/genetics , Hypothyroidism/pathology , Mutation , Receptors, Thyrotropin/genetics , Child , Humans , Male , Thyroid Function Tests , Thyroid Hormones/blood
4.
Thyroid ; 29(7): 1018-1022, 2019 07.
Article in English | MEDLINE | ID: mdl-31030636

ABSTRACT

Six patients are described with bi-allelic DUOX2 variants and widely variable phenotypes. Patient 1 is an infant with a compressive hypothyroid goiter causing respiratory distress, which was promptly alleviated by levothyroxine (LT4). He was a compound heterozygote for DUOX2 variants, including a novel deletion of 540 base pairs. Patients 2 and 3 are siblings with the same compound heterozygous mutations of DUOX2, yet one had overt hypothyroidism at 14 months and the other lifelong euthyroidism. Patient 4 is a compound heterozygote individual and has mild persistent congenital hypothyroidism; his sister (patient 5) only had a borderline thyrotropin elevation at newborn screening, consistent with homozygous DUOX2 variants with a mild impact on enzyme activity. Their euthyroid mother (patient 6) is a compound heterozygote for the same DUOX2 mutations as her son. Targeted exome sequencing did not reveal any relevant modifiers. It is concluded that (i) prompt LT4 replacement in infants with respiratory distress due to a hypothyroid goiter makes surgery unnecessary; and (ii) the clinical expression of DUOX2 deficiency varies widely between individuals and over time, justifying periodic reevaluation of the need for LT4 replacement.


Subject(s)
Congenital Hypothyroidism/genetics , Dual Oxidases/genetics , Goiter/genetics , Hypothyroidism/genetics , Thyroxine/therapeutic use , Adolescent , Adult , Airway Obstruction/diagnostic imaging , Airway Obstruction/etiology , Child , Child, Preschool , Congenital Hypothyroidism/blood , Congenital Hypothyroidism/physiopathology , Dual Oxidases/deficiency , Female , Goiter/complications , Goiter/diagnostic imaging , Goiter/drug therapy , Heterozygote , Homozygote , Humans , Hypothyroidism/blood , Hypothyroidism/drug therapy , Hypothyroidism/physiopathology , Infant , Infant, Newborn , Male , Neonatal Screening , Pedigree , Phenotype , Thyrotropin/blood , Thyroxine/blood
5.
Sci Rep ; 8(1): 5970, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29654250

ABSTRACT

Mutations in the Norrin (NDP) gene cause severe developmental blood vessel defects in the retina leading to congenital blindness. In the retina of Ndph-knockout mice only the superficial capillary network develops. Here, a detailed characterization of this mouse model at late stages of the disease using in vivo retinal imaging revealed cystoid structures that closely resemble the ovoid cysts in the inner nuclear layer of the human retina with cystoid macular edema (CME). In human CME an involvement of Müller glia cells is hypothesized. In Ndph-knockout retinae we could demonstrate that activated Müller cells were located around and within these cystoid spaces. In addition, we observed extensive activation of retinal microglia and development of neovascularization. Furthermore, ex vivo analyses detected extravasation of monocytic cells suggesting a breakdown of the blood retina barrier. Thus, we could demonstrate that also in the developmental retinal vascular pathology present in the Ndph-knockout mouse inflammatory processes are active and may contribute to further retinal degeneration. This observation delivers a new perspective for curative treatments of retinal vasculopathies. Modulation of inflammatory responses might reduce the symptoms and improve visual acuity in these diseases.


Subject(s)
Eye Proteins/metabolism , Inflammation/pathology , Macular Edema/pathology , Neovascularization, Pathologic/pathology , Nerve Tissue Proteins/metabolism , Retina/pathology , Animals , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/pathology , Disease Models, Animal , Humans , Inflammation/metabolism , Macular Edema/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/metabolism , Retina/metabolism , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Vessels/metabolism , Retinal Vessels/pathology , Visual Acuity/physiology
6.
PLoS One ; 12(6): e0178753, 2017.
Article in English | MEDLINE | ID: mdl-28575130

ABSTRACT

Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.


Subject(s)
Blindness/congenital , Genetic Diseases, X-Linked/pathology , Nerve Tissue Proteins/deficiency , Nervous System Diseases/pathology , Retinal Vessels/pathology , Spasms, Infantile/pathology , Angiography , Animals , Blindness/diagnostic imaging , Blindness/genetics , Blindness/pathology , Capillaries/pathology , Cell Hypoxia , Disease Models, Animal , Disease Progression , Electroretinography , Eye Proteins/genetics , Eye Proteins/physiology , Genetic Diseases, X-Linked/diagnostic imaging , Genetic Diseases, X-Linked/genetics , Lasers , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/pathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/genetics , Ophthalmoscopy/methods , Retinal Degeneration , Retinal Vessels/diagnostic imaging , Spasms, Infantile/diagnostic imaging , Spasms, Infantile/genetics
7.
Sci Rep ; 7: 45982, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393838

ABSTRACT

Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans.


Subject(s)
Behavior , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine/genetics , Polymorphism, Genetic , Receptors, Dopamine D2/genetics , Sleep Deprivation/genetics , Sleep Deprivation/physiopathology , Adult , Demography , Electroencephalography , Female , Genotype , Humans , Male , Psychomotor Performance , Task Performance and Analysis , Wakefulness/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...