Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(4)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37111623

ABSTRACT

Beta cell replacement therapies can restore glycemic control to select individuals living with type 1 diabetes. However, the obligation of lifelong immunosuppression restricts cell therapies from replacing exogenous insulin administration. Encapsulation strategies can reduce the inherent adaptive immune response; however, few are successfully translated into clinical testing. Herein, we evaluated if the conformal coating of islets with poly(N-vinylpyrrolidone) (PVPON) and tannic acid (TA) (PVPON/TA) could preserve murine and human islet function while conferring islet allograft protection. In vitro function was evaluated using static glucose-stimulated insulin secretion, oxygen consumption rates, and islet membrane integrity. In vivo function was evaluated by transplanting human islets into diabetic immunodeficient B6.129S7-Rag1tm1Mom/J (Rag-/-) mice. The immunoprotective capacity of the PVPON/TA-coating was assessed by transplanting BALB/c islets into diabetic C57BL/6 mice. Graft function was evaluated by non-fasting blood glucose measurements and glucose tolerance testing. Both coated and non-coated murine and human islets exhibited indistinguishable in vitro potency. PVPON/TA-coated and control human islets were able to restore euglycemia post-transplant. The PVPON/TA-coating as monotherapy and adjuvant to systemic immunosuppression reduced intragraft inflammation and delayed murine allograft rejection. This study demonstrates that PVPON/TA-coated islets may be clinically relevant as they retain their in vitro and in vivo function while modulating post-transplant immune responses.

2.
Xenotransplantation ; 30(2): e12793, 2023 03.
Article in English | MEDLINE | ID: mdl-36748727

ABSTRACT

Neonatal porcine islets (NPIs) are a source of islets for xenotransplantation. In the pig, the pancreatic lobes remain separate, thus, when optimizing NPI isolation, the pancreatic lobes included in the pancreatic digest should be specified. These lobes are the duodenal (DL), splenic (SL) and connecting (CL) lobe that correspond to the head, body-tail, and uncinate process of the human pancreas. In this study we are the first to evaluate all three neonatal porcine pancreatic lobes and NPIs isolated from these lobes. We report, a significant difference in endocrine and progenitor cell composition between lobes, and observed pancreatic duct glands (PDG) within the mesenchyme surrounding exocrine ducts in the DL and CL. Following in vitro differentiation, NPIs isolated from each lobe differed significantly in the percent increase of endocrine cells and final cell composition. Compared to other recipients, diabetic immunodeficient mice transplanted with NPIs isolated from the SL demonstrated euglycemic control as early as 4 weeks (p < 0.05) and achieved normoglycemia by 6 weeks post-transplant (p < 0.01). For the first time we report significant differences between the neonatal porcine pancreatic lobes and demonstrate that NPIs from these lobes differ in xenograft function.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Swine , Humans , Mice , Transplantation, Heterologous , Pancreas , Stem Cells
3.
Xenotransplantation ; 28(6): e12706, 2021 11.
Article in English | MEDLINE | ID: mdl-34245064

ABSTRACT

BACKGROUND: Islet transplantation with neonatal porcine islets (NPIs) is a promising treatment for type 1 diabetes (T1D), but immune rejection poses a major hurdle for clinical use. Innate immune-derived reactive oxygen species (ROS) synthesis can facilitate islet xenograft destruction and enhance adaptive immune responses. METHODS: To suppress ROS-mediated xenograft destruction, we utilized nanothin encapsulation materials composed of multilayers of tannic acid (TA), an antioxidant, and a neutral polymer, poly(N-vinylpyrrolidone) (PVPON). We hypothesized that (PVPON/TA)-encapsulated NPIs will maintain euglycemia and dampen proinflammatory innate immune responses following xenotransplantation. RESULTS: (PVPON/TA)-encapsulated NPIs were viable and glucose-responsive similar to non-encapsulated NPIs. Transplantation of (PVPON/TA)-encapsulated NPIs into hyperglycemic C57BL/6.Rag or NOD.Rag mice restored euglycemia, exhibited glucose tolerance, and maintained islet-specific transcription factor levels similar to non-encapsulated NPIs. Gene expression analysis of (PVPON/TA)-encapsulated grafts post-transplantation displayed reduced proinflammatory Ccl5, Cxcl10, Tnf, and Stat1 while enhancing alternatively activated macrophage Retnla, Arg1, and Stat6 mRNA accumulation compared with controls. Flow cytometry analysis demonstrated significantly reduced innate immune infiltration, MHC-II, co-stimulatory molecule, and TNF expression with concomitant increases in arginase-1+ macrophages and dendritic cells. Similar alterations in immune responses were observed following xenotransplantation into immunocompetent NOD mice. CONCLUSION: Our data suggest that (PVPON/TA) encapsulation of NPIs is an effective strategy to decrease inflammatory innate immune signals involved in NPI xenograft responses through STAT1/6 modulation without compromising islet function.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Swine , Tannins , Transplantation, Heterologous
4.
Xenotransplantation ; 28(3): e12669, 2021 05.
Article in English | MEDLINE | ID: mdl-33316848

ABSTRACT

BACKGROUND: Neonatal porcine islets (NPIs) can restore glucose control in mice, pigs, and non-human primates, representing a potential abundant alternative islet supply for clinical beta cell replacement therapy. However, NPIs are vulnerable to inflammatory insults that could be overcome with genetic modifications. Here, we demonstrate in a series of proof-of-concept experiments the potential of the cytoplasmic ubiquitin-editing protein A20, encoded by the TNFAIP3 gene, as an NPI cytoprotective gene. METHODS: We forced A20 expression in NPI grafts using a recombinant adenovirus 5 (Ad5) vector and looked for impact on TNF-stimulated NF-κB activation and NPI graft function. As adeno-associated vectors (AAV) are clinically preferred vectors but exhibit poor transduction efficacy in NPIs, we next screened a series of AAV serotypes under different transduction protocols for their ability achieve high transduction efficiency and suppress NPI inflammation without impacting NPI maturation. RESULTS: Forcing the expression of A20 in NPI with Ad5 vector blocked NF-κB activation by inhibiting IκBα phosphorylation and degradation, and reduced the induction of pro-inflammatory genes Cxcl10 and Icam1. A20-expressing NPIs also exhibited superior functional capacity when transplanted into diabetic immunodeficient recipient mice, evidenced by a more rapid return to euglycemia and improved GTT compared to unmodified NPI grafts. We found AAV2 combined with a 14-day culture period maximized NPI transduction efficiency (>70% transduction rate), and suppressed NF-κB-dependent gene expression without adverse impact upon NPI maturation. CONCLUSION: We report a new protocol that allows for high-efficiency genetic modification of NPIs, which can be utilized to introduce candidate genes without the need for germline engineering. This approach would be suitable for preclinical and clinical testing of beneficial molecules. We also report for the first time that A20 is cytoprotective for NPI, such that A20 gene therapy could aid the clinical development of NPIs for beta cell replacement.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Animals , Dependovirus , Genetic Therapy , Genetic Vectors , Heterografts , Inflammation , Mice , Swine , Transplantation, Heterologous , Tumor Necrosis Factor alpha-Induced Protein 3
5.
Xenotransplantation ; 27(4): e12575, 2020 07.
Article in English | MEDLINE | ID: mdl-31814191

ABSTRACT

BACKGROUND: Neonatal porcine islets (NPIs) are a promising tissue source for clinical islet xenotransplantation. To facilitate graft monitoring and recovery if needed, an extra-hepatic transplant site would be optimal. In addition, islet transplantation into the portal vein has been associated with life-threatening intraperitoneal bleeding, portal vein thrombosis, hepatic steatosis, and loss of islet graft function. Although it is hypoxic, the subcutaneous space is a potential extra-hepatic location for clinical islet transplantation. In this study, we explore the benefits of fibrin scaffolds in enhancing the engraftment and long-term function of NPI grafts in this ectopic site. METHODS: Diabetic immune-compromised mice were transplanted with 5000 NPIs under the kidney capsule (KC), and subcutaneously with or without fibrin (SC + F, SC, respectively). All mice were monitored for reversal of hyperglycemia and long-term metabolic function. RESULTS: All mice transplanted with NPI under the KC or SC + F (12/12 and 17/17, respectively) achieved normal fasting blood glucose levels between 5 and 22 weeks post-transplantation and displayed normal glucose tolerance during an intraperitoneal glucose tolerance test. In contrast, NPIs transplanted SC with no fibrin (n = 7) failed to obtain normoglycemia. CONCLUSION: Fibrin matrix facilitates engraftment of NPIs in the subcutaneous site of diabetic mice. These data support further investigation of the subcutaneous site for clinical islet xenotransplantation.


Subject(s)
Diabetes Mellitus, Experimental , Fibrin , Islets of Langerhans Transplantation , Animals , Blood Glucose , Diabetes Mellitus, Experimental/surgery , Graft Survival , Islets of Langerhans , Mice , Swine , Transplantation, Heterologous
6.
JCI Insight ; 4(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31581152

ABSTRACT

Islet transplantation can restore lost glycemic control in type 1 diabetes subjects but is restricted in its clinical application by a limiting supply of islets and the need for heavy immune suppression to prevent rejection. TNFAIP3, encoding the ubiquitin editing enzyme A20, regulates the activation of immune cells by raising NF-κB signaling thresholds. Here, we show that increasing A20 expression in allogeneic islet grafts resulted in permanent survival for ~45% of recipients, and > 80% survival when combined with subtherapeutic rapamycin. Allograft survival was dependent upon Tregs and was antigen specific, and grafts showed reduced expression of inflammatory factors. Transplantation of islets with A20 containing a loss-of-function variant (I325N) resulted in increased RIPK1 ubiquitination and NF-κB signaling, graft hyperinflammation, and acute allograft rejection. Overexpression of A20 in human islets potently reduced expression of inflammatory mediators, with no impact on glucose-stimulated insulin secretion. Therapeutic administration of A20 raises inflammatory signaling thresholds to favor immune tolerance and promotes islet allogeneic survival. Clinically, this would allow for reduced immunosuppression and support the use of alternate islet sources.


Subject(s)
Immune Tolerance/physiology , Islets of Langerhans Transplantation , Tumor Necrosis Factor alpha-Induced Protein 3/physiology , Graft Survival , Humans , Transplantation, Homologous
7.
Transplantation ; 102(10): e413-e423, 2018 10.
Article in English | MEDLINE | ID: mdl-29975241

ABSTRACT

BACKGROUND: There is a strong rationale to pursue the use of neonatal porcine islets (NPIs) as an unlimited source of islets for clinical xenotransplantation. Because NPIs are composed of immature insulin producing beta (ß) cells and ductal precursor cells, they provide an ideal model to examine culture conditions to enhance ß cell proliferation and/or ß cell neoformation from ductal cells. In an attempt to optimize the potential of NPIs as a source of ß cell grafts, we used an in vitro differentiation protocol and measured its effect on the functional maturation and differentiation of NPIs. METHODS: Pancreata from 1- to 3-day-old neonatal pigs were digested and cultured in standard Ham's F10 media for 5 days. Each independent preparation was then further cultured in Dulbecco's modified Eagle medium nutrient mixture-F12 differentiation media containing growth factors added in a stepwise fashion, or cultured in control Ham's F10 media. After 20 days in culture, islets were assessed for insulin secretory capacity, cellular composition, gene expression, and metabolic activity after transplantation in immunodeficient mice with diabetes. RESULTS: Compared with control islets, differentiated islets exhibited a significantly higher proportion of endocrine cells, proliferating cell nuclear antigen double positive ß cells, and an enhanced glucose-stimulated insulin secretory activity. Mice transplanted with differentiated islets had significantly lower blood glucose values at weeks 18 and 20 compared with nondifferentiated controls and were shown to be more glucose tolerant. CONCLUSIONS: Culturing NPIs in a 20-day stepwise differentiation media increases the proportion of endocrine cells and augments both in vitro and in vivo function of the islets.


Subject(s)
Diabetes Mellitus, Experimental/surgery , Islets of Langerhans Transplantation/methods , Islets of Langerhans/physiology , Tissue Culture Techniques/methods , Transplantation, Heterologous/methods , Animals , Animals, Newborn , Blood Glucose , Cell Differentiation , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Heterografts/cytology , Heterografts/physiology , Humans , Insulin/metabolism , Islets of Langerhans/cytology , Male , Mice , Streptozocin/toxicity , Sus scrofa , Treatment Outcome
8.
World J Diabetes ; 5(1): 59-68, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24567802

ABSTRACT

AIM: To minimize the expansion of pancreatic mesenchymal cells in vitro and confirm that ß-cell progenitors reside within the pancreatic epithelium. METHODS: Due to mesenchymal stem cell (MSC) expansion and overgrowth, progenitor cells within the pancreatic epithelium cannot be characterized in vitro, though ß-cell dedifferentiation and expansion of MSC intermediates via epithelial-mesenchymal transition (EMT) may generate ß-cell progenitors. Pancreatic epithelial cells from endocrine and non-endocrine tissue were expanded and differentiated in a novel pancreatic epithelial expansion medium supplemented with growth factors known to support epithelial cell growth (dexamethasone, epidermal growth factor, 3,5,3'-triiodo-l-thyronine, bovine brain extract). Cells were also infected with a single and dual lentiviral reporter prior to cell differentiation. Enhanced green fluorescent protein was controlled by the rat Insulin 1 promoter and the monomeric red fluorescent protein was controlled by the mouse PDX1 promoter. In combination with lentiviral tracing, cells expanded and differentiated in the pancreatic medium were characterized by flow cytometry (BD fluorescence activated cell sorting), immunostaining and real-time polymerase chain reaction (PCR) (7900HT Fast Realtime PCR System). RESULTS: In the presence of 10% serum MSCs rapidly expand in vitro while the epithelial cell population declines. The percentage of vimentin(+) cells increased from 22% ± 5.83% to 80.43% ± 3.24% (14 d) and 99.00% ± 0.0% (21 d), and the percentage of epithelial cells decreased from 74.71% ± 8.34% to 26.57% ± 9.75% (14 d) and 4.00% ± 1.53% (21 d), P < 0.01 for all time points. Our novel pancreatic epithelial expansion medium preserved the epithelial cell phenotype and minimized epithelial cell dedifferentiation and EMT. Cells expanded in our epithelial medium contained significantly less mesenchymal cells (vimentin(+)) compared to controls (44.87% ± 4.93% vs 95.67% ± 1.36%; P < 0.01). During cell differentiation lentiviral reporting demonstrated that, PDX1(+) and insulin(+) cells were localized within adherent epithelial cell aggregates compared to controls. Compared to starting islets differentiated cells had at least two fold higher gene expression of PDX1, insulin, PAX4 and RFX (P < 0.05). CONCLUSION: PDX1(+) cells were confined to adherent epithelial cell aggregates and not vimentin(+) cells (mesenchymal), suggesting that EMT is not a mechanism for generating pancreatic progenitor cells.

9.
PLoS One ; 7(5): e38189, 2012.
Article in English | MEDLINE | ID: mdl-22666480

ABSTRACT

Transplantation of human islets is an attractive alternative to daily insulin injections for patients with type 1 diabetes. However, the majority of islet recipients lose graft function within five years. Inflammation is a primary contributor to graft loss, and inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts. As mesenchymal stem cells (MSCs) possess numerous immunoregulatory properties, we hypothesized that MSCs could protect human islets from pro-inflammatory cytokines. Five hundred human islets were co-cultured with 0.5 or 1.0 × 10(6) human MSCs derived from bone marrow or pancreas for 24 hours followed by 48 hour exposure to interferon-γ, tumor necrosis factor-α and interleukin 1ß. Controls include islets cultured alone (± cytokines) and with human dermal fibroblasts (± cytokines). For all conditions, glucose stimulated insulin secretion (GSIS), total islet cellular insulin content, islet ß cell apoptosis, and potential cytoprotective factors secreted in the culture media were determined. Cytokine exposure disrupted human islet GSIS based on stimulation index and percentage insulin secretion. Conversely, culture with 1.0 × 10(6) bMSCs preserved GSIS from cytokine treated islets. Protective effects were not observed with fibroblasts, indicating that preservation of human islet GSIS after exposure to pro-inflammatory cytokines is MSC dependent. Islet ß cell apoptosis was observed in the presence of cytokines; however, culture of bMSCs with islets prevented ß cell apoptosis after cytokine treatment. Hepatocyte growth factor (HGF) as well as matrix metalloproteinases 2 and 9 were also identified as putative secreted cytoprotective factors; however, other secreted factors likely play a role in protection. This study, therefore, demonstrates that MSCs may be beneficial for islet engraftment by promoting cell survival and reduced inflammation.


Subject(s)
Cytokines/pharmacology , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Mesenchymal Stem Cells/cytology , Adolescent , Adult , Aged , Apoptosis/drug effects , Bone Marrow Cells/cytology , Cell Aggregation , Coculture Techniques , Cytoprotection/drug effects , Glucose/pharmacology , Graft Survival/drug effects , Hepatocyte Growth Factor/metabolism , Humans , Inflammation/metabolism , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation , Middle Aged , Young Adult
10.
Methods Mol Biol ; 698: 123-40, 2011.
Article in English | MEDLINE | ID: mdl-21431515

ABSTRACT

Mesenchymal stem cells, also termed multipotent mesenchymal stromal cells (MSCs), can be isolated from most adult tissues. Although the exact origin of MSCs expanded from the human pancreas has not been resolved, we have developed protocols to isolate and expand MSCs from human pancreatic tissue that remains after islet procurement. Similar to techniques used to isolate MSCs from bone marrow, pancreatic MSCs are isolated based on their cell adherence, expression of several cell surface antigens, and multilineage differentiation. The protocols for isolating, characterizing, and differentiating MSCs from the pancreas are presented in this chapter.


Subject(s)
Cell Culture Techniques/methods , Cell Separation/methods , Multipotent Stem Cells/cytology , Pancreas/cytology , Adipogenesis , Alkaline Phosphatase/metabolism , Cell Aggregation , Cryopreservation , Flow Cytometry , Humans , Lipid Metabolism , Osteogenesis , Staining and Labeling
11.
Lab Invest ; 89(2): 110-21, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19079324

ABSTRACT

Pancreatic mesenchymal stem cells (MSCs) may be derived from human beta-cells undergoing reversible epithelial-mesenchymal transition (EMT), suggesting that they could be a potential source of new beta-cells. In this study we sought to determine the origin of pancreatic MSCs in the nonendocrine pancreas. Double immunofluorescent (IF) staining and flow cytometry were used to assess the cell phenotype of nonendocrine pancreas tissue following islet procurement, during in vitro expansion of MSCs, and after differentiation. IF staining of paraffin-embedded pancreatic biopsy sections was used to assess cell phenotype in vivo. In this study we demonstrated that: (1) pancreatic epithelial cells do not express MSC antigens in vivo; (2) following islet isolation EpCAM- and CK19-positive epithelial cells coexpressed the MSC antigens CD44 (32+/-8% and 38+/-10%) and CD29 (85+/-4% and 64+/-4%); (3) during in vitro expansion the number of single-positive epithelial and double-positive epithelial/MSCs decreased whereas the number of single-positive MSCs increased and (4) differentiated MSCs do not revert to a true epithelial cell phenotype in our culture conditions, as epithelial cell surface markers (EpCAM, CK19 and E-Cadherin) are not reexpressed, although the MSC phenotype is altered. This study demonstrates that MSCs may be derived in vitro via a pancreatic epithelial cell undergoing EMT, however it is more likely that a small percentage of MSCs that reside in the adult pancreas are proliferating whereas the epithelial cells are negatively selected by the experimental culture conditions.


Subject(s)
Artifacts , Epithelial Cells/cytology , Mesoderm/cytology , Pancreas, Exocrine/cytology , Adult , Aged , Biomarkers/metabolism , Cell Count , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/metabolism , Flow Cytometry , Fluorescent Antibody Technique, Indirect , Humans , Hyaluronan Receptors/metabolism , Immunophenotyping , Integrin beta1/metabolism , Mesoderm/metabolism , Microscopy, Fluorescence , Middle Aged , Phenotype
12.
Lab Invest ; 86(2): 141-53, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16402034

ABSTRACT

Fibroblast-like cells emerging from cultured human pancreatic endocrine and exocrine tissue have been reported. Although a thorough phenotypic characterization of these cells has not yet been carried out, these cells have been hypothesized to be contaminating fibroblasts, mesenchyme and/or possibly beta-cell progenitors. In this study, we expanded fibroblast-like cells from adult human exocrine pancreas following islet isolation and characterized these cells as mesenchymal stem cells (MSCs) based on their cell surface antigen expression and ability to differentiate into mesoderm. Analysis by flow cytometry demonstrated that pancreatic MSCs express cell surface antigens used to define MSCs isolated from bone marrow such as CD13, CD29, CD44, CD49b, CD54, CD90 and CD105. In addition, utilizing protocols used to differentiate MSCs isolated from other somatic tissues, we successfully differentiated pancreatic MSCs into: (1) osteocytes that stained positive for alkaline phosphatase, collagen, mineralization (calcification) and expressed osteocalcin, (2) adipocytes that contained lipid inclusions and expressed fatty acid binding protein 4 and (3) chondrocytes that expressed aggrecan. We also demonstrated that pancreatic MSCs are multipotent and capable of deriving cells of endodermal origin. Pancreatic MSCs were differentiated into hepatocytes that stained positive for human serum albumin and expressed endoderm and liver-specific genes such as GATA 4 and tyrosine aminotransferase. In addition, preliminary protocols used to differentiate these cells into insulin-producing cells resulted in the expression of genes necessary for islet and beta-cell development such as Pax4 and neurogenin 3. Therefore, multipotent MSCs residing within the adult exocrine pancreas could represent a progenitor cell, which when further manipulated could result in the production of functional islet beta-cells.


Subject(s)
Cell Division , Mesenchymal Stem Cells/cytology , Pancreas/cytology , Antigens, CD/immunology , Base Sequence , DNA Primers , Epithelial Cells/cytology , Epithelial Cells/immunology , Flow Cytometry , Humans , Immunohistochemistry , Immunophenotyping , Mesenchymal Stem Cells/immunology , Pancreas/immunology , Reverse Transcriptase Polymerase Chain Reaction
13.
Am J Transplant ; 4(7): 1051-60, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15196061

ABSTRACT

Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes. Peripheral tissues were screened for PERV and porcine DNA using PCR. Tissues with positive DNA were analyzed for PERV mRNA using RT-PCR. No significant difference was observed between non-EC and EC transplants regarding presence of PERV or porcine-specific DNA or mRNA. In reconstituted animals, little PERV or porcine DNA, and no PERV mRNA was detected. No PERV or porcine-specific DNA was observed in animals implanted with a TheraCyte trade mark device. In conclusion, an intact immune system significantly lowered the presence of PERV. Microencapsulation of islets did not alter PERV presence, however, macroencapsulation in the TheraCyte device did. Lower PERV incidence coincided with lower porcine DNA in peripheral tissues, linking the presence of PERV to migration of porcine cells.


Subject(s)
Endogenous Retroviruses/isolation & purification , Islets of Langerhans Transplantation/methods , Retroviridae Infections/diagnosis , Retroviridae/genetics , Animals , Animals, Newborn , Cell Movement , Cyclooxygenase 2 , DNA, Viral/genetics , Diabetes Mellitus, Experimental , Drug Compounding , Endogenous Retroviruses/genetics , Islets of Langerhans/cytology , Isoenzymes/genetics , Mice , Mice, SCID , Polymerase Chain Reaction , Prostaglandin-Endoperoxide Synthases/genetics , RNA, Messenger/metabolism , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spleen/cytology , Swine , Time Factors , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...