Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 303(1): 172-6, 1993 May 15.
Article in English | MEDLINE | ID: mdl-8489262

ABSTRACT

Recently, it was demonstrated that 4-methylpyrazole was not only an inhibitor of alcohol dehydrogenase but also caused competitive inhibition of fatty acyl-CoA synthetase, the enzyme which activates fatty acids (B. U. Bradford, D. T. Forman, and R. G. Thurman, 1993, Mol. Pharmacol. 43, 115-119). Rates of catalase-dependent alcohol metabolism were decreased in alcohol dehydrogenase-negative (ADH-) deer mice because the H2O2 supply for catalase via peroxisomal fatty acid oxidation was inhibited due to substrate limitation. In light of these findings it became necessary to reevaluate the role of catalase and alcohol dehydrogenase in alcohol metabolism. In this study, methanol, a selective substrate for catalase in rodents, was compared with ethanol. Rates of ethanol and methanol metabolism were studied in vivo at blood alcohol levels ranging from 50 to 500 mg/dl. In the ADH- deer mouse, rates of methanol and ethanol metabolism increased when alcohol was elevated from 0 to 100 mg/dl and were maximal at values around 6-8 mmol/kg/h (half-maximal rates were observed at blood alcohol levels around 50 mg/dl). In the ADH+ deer mouse, rates of ethanol metabolism increased to values around 9 mmol/kg/h at 100 mg/dl and remained constant at blood levels up to 500 mg/dl. In contrast, rates of methanol metabolism increased to values of only 5 mmol/kg/h at levels of 100 mg/dl (the half-maximal rate was about 2.5 mmol/kg/h at 50 mg/dl) followed by a steady increase to 9 mmol/kg/h as the blood level was increased from 100 to 500 mg/dl (the half-maximal rate for this second component was around 6 mmol/kg/h at 300 mg/dl). Rates of methanol uptake were 50 +/- 4 nmol/min/mg protein in 10,000g pellets from ADH- deer mouse livers; however, methanol was not metabolized by isolated microsomes. The catalase inhibitor aminotriazole decreased ethanol and methanol metabolism 75% in ADH- deer mice. Further, olive oil, which is rich in oleate, increased methanol metabolism from 7 to 11.5 mmol/kg/h. This stimulation was blocked by fructose, which diminishes ATP and decreases H2O2 supply. In the ADH+ deer mouse, fructose (2 g/kg) stimulated ethanol metabolism as expected; however, inhibition of both ethanol and methanol metabolism was observed with higher doses of fructose (10 g/kg). Taken together, these data support the hypothesis that catalase is the predominant pathway for alcohol metabolism in the ADH- deer mouse. The contribution of catalase was about 50% in the ADH+ mutant at low doses of ethanol and approached 100% as the alcohol concentration was elevated.


Subject(s)
Alcohol Dehydrogenase/metabolism , Catalase/metabolism , Ethanol/metabolism , Methanol/metabolism , Amitrole/pharmacology , Animals , Catalase/antagonists & inhibitors , Fructose/pharmacology , Olive Oil , Oxidation-Reduction , Peromyscus , Plant Oils/pharmacology
2.
Toxicol Lett ; 60(1): 61-8, 1992 Jan.
Article in English | MEDLINE | ID: mdl-1539182

ABSTRACT

Increases in acyl coenzyme A (CoA) oxidase activity due to peroxisome proliferation are postulated to cause oxidative stress via elevated production of H2O2, leading to DNA damage. These changes are suspected to be responsible for tumor formation caused by non-genotoxic carcinogens which do not bind to DNA but cause proliferation of peroxisomes. However, the activity of the peroxisomal enzyme acyl CoA oxidase assayed in vitro in the presence of excess fatty acyl CoA substrate may not reflect rates of H2O2 generation in intact liver where fatty acid supply is carefully controlled in part by delivery of substrate. The purpose of this work was to determine if rates of hepatic H2O2 generation were altered in perfused liver and in vivo following induction of H2O2-generating acyl CoA oxidase activity. Injection of the potent peroxisome proliferating agent perfluorooctanoate into rats 5 days prior to sacrifice caused an expected 4-fold increase of H2O2-generating acyl CoA oxidase activity measured in hepatic homogenates. In contrast, rates of H2O2 generation in perfused liver measured spectrophotometrically (660-640 nm) through a lobe of the liver were not altered by perfluorooctanoate treatment (7.3 +/- 1.5 vs. 7.8 +/- 0.5 mumol/g/h in livers from untreated control rats). Similar treatment with perfluorooctanoate also increased in vitro acyl CoA oxidase activity 9-fold in livers from deermice; however, rates of elimination of methanol, a selective substrate for catalase in rodents whose oxidation is limited by the supply of H2O2, were not altered significantly in vivo (control, 110 +/- 11 mumol/g/h vs. perfluorooctanoate, 112 +/- 32 mumol/g/h). Taken together, these data demonstrate that elevation of H2O2 formation by acyl CoA oxidase activity measured in vitro is not necessarily associated with increases in rates of H2O2 generation in intact perfused liver or in vivo, most likely due to rate-limitation in intact cells by fatty acid supply. These data do not support the hypothesis that the induction of peroxisomes leads to excessive H2O2 production and oxidative stress. It follows that alternative hypotheses to explain carcinogenesis caused by peroxisome-proliferating agents need to be considered.


Subject(s)
Caprylates/pharmacology , Fluorocarbons/pharmacology , Hydrogen Peroxide/metabolism , Liver/drug effects , Microbodies/drug effects , Animals , Cell Division/drug effects , Liver/metabolism , Male , Methanol/pharmacokinetics , Microbodies/metabolism , Perfusion , Peromyscus , Rats , Rats, Inbred Strains
3.
Arch Biochem Biophys ; 288(2): 435-9, 1991 Aug 01.
Article in English | MEDLINE | ID: mdl-1898039

ABSTRACT

The purpose of this work was to compare the roles of a newly described mitochondrial dehydrogenase and catalase in ethanol elimination in deer mice deficient in alcohol dehydrogenase (ADH-). Fructose was used because of its well-known ability to stimulate dehydrogenase-dependent ethanol metabolism. Rates of ethanol metabolism in vivo were decreased significantly by about 60% in a dose-dependent manner by fructose in deer mice fed an ethanol-containing or a corn oil control diet. In addition, rates of metabolism of methanol, a selective substrate for catalase in rodents, were similar to rates of ethanol elimination and were decreased from 6.9 +/- 1.0 to 1.7 +/- 0.5 mmol/kg/h by fructose, supporting the hypothesis that catalase and not a mitochondrial dehydrogenase predominates in ethanol oxidation in ADH-deer mice. Glycolate, a substrate for peroxisomal H2O2 generation, reversed the inhibition of alcohol metabolism by fructose completely, indicating that fructose did not inhibit catalase directly. As expected, the ATP/ADP ratio was decreased by fructose significantly from 4.2 +/- 0.4 to 2.4 +/- 0.4 in deer mouse livers. These data are consistent with the hypothesis that fructose decreases catalase-dependent ethanol metabolism in vivo by inhibiting hepatic H2O2 generation.


Subject(s)
Alcohol Dehydrogenase/deficiency , Ethanol/metabolism , Fructose/pharmacology , Liver/metabolism , Microsomes, Liver/metabolism , Adenine Nucleotides/metabolism , Animals , Catalase/metabolism , Glycolates/pharmacology , Kinetics , Methanol/metabolism , Models, Biological , Peromyscus
SELECTION OF CITATIONS
SEARCH DETAIL
...