Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Crit Rev Toxicol ; 53(1): 34-51, 2023 01.
Article in English | MEDLINE | ID: mdl-37115714

ABSTRACT

Immunotoxicity is the critical endpoint used by some regulatory agencies to establish toxicity values for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, the hypothesis that exposure to certain per- and polyfluoroalkyl substances (PFAS) causes immune dysregulation is subject to much debate. An independent, international expert panel was engaged utilizing methods to reduce bias and "groupthink". The panel concluded there is moderate evidence that PFOS and PFOA are immunotoxic, based primarily on evidence from animal data. However, species concordance and human relevance cannot be well established due to data limitations. The panel recommended additional testing that includes longer-term exposures, evaluates both genders, includes other species of animals, tests lower dose levels, assesses more complete measures of immune responses, and elucidates the mechanism of action. Panel members agreed that the Faroe Islands cohort data should not be used as the primary basis for deriving PFAS risk assessment values. The panel agreed that vaccine antibody titer is not useful as a stand-alone metric for risk assessment. Instead, PFOA and PFOS toxicity values should rely on multiple high-quality studies, which are currently not available for immune suppression. The panel concluded that the available PFAS immune epidemiology studies suffer from weaknesses in study design that preclude their use, whereas available animal toxicity studies provide comprehensive dataset to derive points of departure (PODs) for non-immune endpoints. The panel recommends accounting for potential PFAS immunotoxicity by applying a database uncertainty factor to POD values derived from animal studies for other more robustly supported critical effects.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Animals , Humans , Male , Female , Fluorocarbons/toxicity , Caprylates/toxicity , Epidemiologic Studies , Alkanesulfonic Acids/toxicity
3.
Arch Toxicol ; 96(9): 2419-2428, 2022 09.
Article in English | MEDLINE | ID: mdl-35701604

ABSTRACT

Concern over substances that may cause cancer has led to various classification schemes to recognize carcinogenic threats and provide a basis to manage those threats. The least useful schemes have a binary choice that declares a substance carcinogenic or not. This overly simplistic approach ignores the complexity of cancer causation by considering neither how the substance causes cancer, nor the potency of that mode of action. Consequently, substances are classified simply as "carcinogenic", compromising the opportunity to properly manage these kinds of substances. It will likely be very difficult, if not impossible, to incorporate New Approach Methodologies (NAMs) into binary schemes. In this paper we propose a new approach cancer classification scheme that segregates substances by both mode of action and potency into three categories and, as a consequence, provides useful guidance in the regulation and management of substances with carcinogenic potential. Examples are given, including aflatoxin (category A), trichlorethylene (category B), and titanium dioxide (category C), which demonstrate the clear differentiation among these substances that generate appropriate levels of concern and management options.


Subject(s)
Carcinogens , Neoplasms , Carcinogens/toxicity , Humans , Neoplasms/chemically induced , Risk Assessment
4.
Arch Toxicol ; 95(11): 3611-3621, 2021 11.
Article in English | MEDLINE | ID: mdl-34559250

ABSTRACT

The long running controversy about the relative merits of hazard-based versus risk-based approaches has been investigated. There are three levels of hazard codification: level 1 divides chemicals into dichotomous bands of hazardous and non-hazardous; level 2 divides chemicals into bands of hazard based on severity and/or potency; and level 3 places each chemical on a continuum of hazard based on severity and/or potency. Any system which imposes compartments onto a continuum will give rise to issues at the boundaries, especially with only two compartments. Level 1 schemes are only justifiable if there is no variation in severity, or potency or if there is no threshold. This is the assumption implicit in GHS/EU classification for carcinogenicity, reproductive toxicity and mutagenicity. However, this assumption has been challenged. Codification level 2 hazard assessments offer a range of choices and reduce the built-in conflict inherent in the level 1 process. Level 3 assessments allow a full range of choices between the extremes and reduce the built-in conflict even more. The underlying reason for the controversy between hazard and risk is the use of level 1 hazard codification schemes in situations where there are ranges of severity and potency which require the use of level 2 or level 3 hazard codification. There is not a major difference between level 2 and level 3 codification, and they can both be used to select appropriate risk management options. Existing level 1 codification schemes should be reviewed and developed into level 2 schemes where appropriate.


Subject(s)
Hazardous Substances/classification , Risk Assessment/methods , Carcinogenesis , European Union , Humans , Mutagenesis , Reproduction/drug effects , Risk Assessment/legislation & jurisprudence , Risk Management/methods
5.
Regul Toxicol Pharmacol ; 103: 124-129, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30660801

ABSTRACT

Developments in the understanding of the etiology of cancer have undermined the 1970s concept that chemicals are either "carcinogens" or "non-carcinogens". The capacity to induce cancer should not be classified in an inflexible binary manner as present (carcinogen) or absent (non-carcinogen). Chemicals may induce cancer by three categories of mode of action: direct interaction with DNA or DNA replication including DNA repair and epigenetics; receptor-mediated induction of cell division; and non-specific induction of cell division. The long-term rodent bioassay is neither appropriate nor efficient to evaluate carcinogenic potential for humans and to inform risk management decisions. It is of questionable predicitiveness, expensive, time consuming, and uses hundreds of animals. Although it has been embedded in practice for over 50 years, it has only been used to evaluate less than 5% of chemicals that are in use. Furthermore, it is not reproducible because of the probabilisitic nature of the process it is evaluating combined with dose limiting toxicity, dose selection, and study design. The modes of action that lead to the induction of tumors are already considered under other hazardous property categories in classification (Mutagenicity/Genotoxicity and Target Organ Toxicity); a separate category for Carcinogenicity is not required and provides no additional public health protection.


Subject(s)
Carcinogenesis/chemically induced , Carcinogens/classification , Carcinogens/pharmacology , Animals , Carcinogenicity Tests , Carcinogens/toxicity , Humans , Reproducibility of Results
6.
Regul Toxicol Pharmacol ; 103: 86-92, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30634023

ABSTRACT

Developments in the understanding of the etiology of cancer have profound implications for the way the carcinogenicity of chemicals is addressed. This paper proposes a unified theory of carcinogenesis that will illuminate better ways to evaluate and regulate chemicals. In the last four decades, we have come to understand that for a cell and a group of cells to begin the process of unrestrained growth that is defined as cancer, there must be changes in DNA that reprogram the cell from normal to abnormal. Cancer is the consequence of DNA coding errors that arise either directly from mutagenic events or indirectly from cell proliferation especially if sustained. Chemicals that act via direct interaction with DNA can induce cancer because they cause mutations which can be carried forward in dividing cells. Chemicals that act via non-genotoxic mechanisms must be dosed to maintain a proliferative environment so that the steps toward neoplasia have time to occur. Chemicals that induce increased cellular proliferation can be divided into two categories: those which act by a cellular receptor to induce cellular proliferation, and those which act via non-specific mechanisms such as cytotoxicity. This knowledge has implications for testing chemicals for carcinogenic potential and risk management.


Subject(s)
Carcinogenicity Tests , Carcinogens/chemistry , Carcinogens/pharmacology , Neoplasms/chemically induced , Animals , DNA, Neoplasm/drug effects , Humans
7.
Regul Toxicol Pharmacol ; 103: 100-105, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30634021

ABSTRACT

Over 50 years, we have learned a great deal about the biology that underpins cancer but our approach to testing chemicals for carcinogenic potential has not kept up. Only a small number of chemicals has been tested in animal-intensive, time consuming, and expensive long-term bioassays in rodents. We now recommend a transition from the bioassay to a decision-tree matrix that can be applied to a broader range of chemicals, with better predictivity, based on the premise that cancer is the consequence of DNA coding errors that arise either directly from mutagenic events or indirectly from sustained cell proliferation. The first step is in silico and in vitro assessment for mutagenic (DNA reactive) activity. If mutagenic, it is assumed to be carcinogenic unless evidence indicates otherwise. If the chemical does not show mutagenic potential, the next step is assessment of potential human exposure compared to the threshold for toxicological concern (TTC). If potential human exposure exceeds the TTC, then testing is done to look for effects associated with the key characteristics that are precursors to the carcinogenic process, such as increased cell proliferation, immunosuppression, or significant estrogenic activity. Protection of human health is achieved by limiting exposures to below NOEALs for these precursor effects. The decision tree matrix is animal-sparing, cost effective, and in step with our growing knowledge of the process of cancer formation.


Subject(s)
Carcinogenesis/chemically induced , Carcinogenicity Tests , Carcinogens/chemistry , Humans , Risk Assessment
8.
Reprod Toxicol ; 78: 150-168, 2018 06.
Article in English | MEDLINE | ID: mdl-29694846

ABSTRACT

Potassium perfluorohexanesulfonate (K+PFHxS) was evaluated for reproductive/developmental toxicity in CD-1 mice. Up to 3 mg/kg-d K+PFHxS was administered (n = 30/sex/group) before mating, for at least 42 days in F0 males, and for F0 females, through gestation and lactation. F1 pups were directly dosed with K+PFHxS for 14 days after weaning. There was an equivocal decrease in live litter size at 1 and 3 mg/kg-d, but the pup-born-to-implant ratio was unaffected. Adaptive hepatocellular hypertrophy was observed, and in 3 mg/kg-d F0 males, it was accompanied by concomitant decreased serum cholesterol and increased alkaline phosphatase. There were no other toxicologically significant findings on reproductive parameters, hematology/clinical pathology/TSH, neurobehavioral effects, or histopathology. There were no treatment-related effects on postnatal survival, development, or onset of preputial separation or vaginal opening in F1 mice. Consistent with previous studies, our data suggest that the potency of PFHxS is much lower than PFOS in rodents.


Subject(s)
Prenatal Exposure Delayed Effects , Sulfonic Acids/toxicity , Alkaline Phosphatase/blood , Animals , Cholesterol/blood , Female , Fluorocarbons , Hepatocytes/drug effects , Hepatocytes/pathology , Male , Maternal-Fetal Exchange , Mice, Inbred ICR , Pregnancy
10.
Regul Toxicol Pharmacol ; 82: 158-166, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27780763

ABSTRACT

Classification schemes for carcinogenicity based solely on hazard-identification such as the IARC monograph process and the UN system adopted in the EU have become outmoded. They are based on a concept developed in the 1970s that chemicals could be divided into two classes: carcinogens and non-carcinogens. Categorization in this way places into the same category chemicals and agents with widely differing potencies and modes of action. This is how eating processed meat can fall into the same category as sulfur mustard gas. Approaches based on hazard and risk characterization present an integrated and balanced picture of hazard, dose response and exposure and allow informed risk management decisions to be taken. Because a risk-based decision framework fully considers hazard in the context of dose, potency, and exposure the unintended downsides of a hazard only approach are avoided, e.g., health scares, unnecessary economic costs, loss of beneficial products, adoption of strategies with greater health costs, and the diversion of public funds into unnecessary research. An initiative to agree upon a standardized, internationally acceptable methodology for carcinogen assessment is needed now. The approach should incorporate principles and concepts of existing international consensus-based frameworks including the WHO IPCS mode of action framework.


Subject(s)
Carcinogenicity Tests/methods , Carcinogens/classification , Carcinogens/toxicity , Terminology as Topic , Animal Testing Alternatives , Animals , Biological Assay , Dose-Response Relationship, Drug , Humans , Reproducibility of Results , Risk Assessment , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...