Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Structure ; 30(2): 206-214.e4, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34739841

ABSTRACT

Tetraspanins are four-pass transmembrane proteins that function by regulating trafficking of partner proteins and organizing signaling complexes in the membrane. Tspan15, one of a six-member TspanC8 subfamily, forms a complex that regulates the trafficking, maturation, and substrate selectivity of the transmembrane protease ADAM10, an essential enzyme in mammalian physiology that cleaves a wide variety of membrane-anchored substrates, including Notch receptors, amyloid precursor protein, cadherins, and growth factors. We present here crystal structures of the Tspan15 large extracellular loop (LEL) required for functional association with ADAM10 both in isolation and in complex with the Fab fragment of an anti-Tspan15 antibody. Comparison of the Tspan15 LEL with other tetraspanin LEL structures shows that a core helical framework buttresses a variable region that structurally diverges among LELs. Using co-immunoprecipitation and a cellular N-cadherin cleavage assay, we identify a site on Tspan15 required for both ADAM10 binding and promoting substrate cleavage.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Membrane Proteins/metabolism , Mutation , Tetraspanins/chemistry , Tetraspanins/metabolism , Binding Sites , Cell Line , Crystallography, X-Ray , Gene Knockout Techniques , Humans , Models, Molecular , Protein Binding , Protein Structure, Secondary , Tetraspanins/genetics
2.
Biochemistry ; 60(34): 2593-2609, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34411482

ABSTRACT

SHP2 is a protein tyrosine phosphatase that plays a critical role in the full activation of the Ras-MAPK pathway upon stimulation of receptor tyrosine kinases, which are frequently amplified or mutationally activated in human cancer. In addition, activating mutations in SHP2 result in developmental disorders and hematologic malignancies. Several allosteric inhibitors have been developed for SHP2 and are currently in clinical trials. Here, we report the development and evaluation of a SHP2 PROTAC created by conjugating RMC-4550 with pomalidomide using a PEG linker. This molecule is highly selective for SHP2, induces degradation of SHP2 in leukemic cells at submicromolar concentrations, inhibits MAPK signaling, and suppresses cancer cell growth. SHP2 PROTACs serve as an alternative strategy for targeting ERK-dependent cancers and are useful tools alongside allosteric inhibitors for dissecting the mechanisms by which SHP2 exerts its oncogenic activity.


Subject(s)
Antineoplastic Agents/pharmacology , Methanol/analogs & derivatives , Neoplasms/drug therapy , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrazines/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Humans , Molecular Targeted Therapy , Mutation , Neoplasms/metabolism , Neoplasms/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proteolysis , Signal Transduction
3.
Nat Chem Biol ; 16(3): 318-326, 2020 03.
Article in English | MEDLINE | ID: mdl-32042200

ABSTRACT

Bile salt hydrolase (BSH) enzymes are widely expressed by human gut bacteria and catalyze the gateway reaction leading to secondary bile acid formation. Bile acids regulate key metabolic and immune processes by binding to host receptors. There is an unmet need for a potent tool to inhibit BSHs across all gut bacteria to study the effects of bile acids on host physiology. Here, we report the development of a covalent pan-inhibitor of gut bacterial BSHs. From a rationally designed candidate library, we identified a lead compound bearing an alpha-fluoromethyl ketone warhead that modifies BSH at the catalytic cysteine residue. This inhibitor abolished BSH activity in conventional mouse feces. Mice gavaged with a single dose of this compound displayed decreased BSH activity and decreased deconjugated bile acid levels in feces. Our studies demonstrate the potential of a covalent BSH inhibitor to modulate bile acid composition in vivo.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Gastrointestinal Microbiome/physiology , Amidohydrolases/physiology , Animals , Bacteria/enzymology , Bile Acids and Salts/metabolism , Drug Design , Female , Humans , Male , Mice , Mice, Inbred C57BL , Small Molecule Libraries
4.
Sci Signal ; 12(606)2019 11 05.
Article in English | MEDLINE | ID: mdl-31690634

ABSTRACT

Canonical Notch signaling relies on regulated proteolysis of the receptor Notch to generate a nuclear effector that induces the transcription of Notch-responsive genes. In higher organisms, one Notch-responsive gene that is activated in many different cell types encodes the Notch-regulated ankyrin repeat protein (NRARP), which acts as a negative feedback regulator of Notch responses. Here, we showed that NRARP inhibited the growth of Notch-dependent T cell acute lymphoblastic leukemia (T-ALL) cell lines and bound directly to the core Notch transcriptional activation complex (NTC), requiring both the transcription factor RBPJ and the Notch intracellular domain (NICD), but not Mastermind-like proteins or DNA. The crystal structure of an NRARP-NICD1-RBPJ-DNA complex, determined to 3.75 Å resolution, revealed that the assembly of NRARP-NICD1-RBPJ complexes relied on simultaneous engagement of RBPJ and NICD1, with the three ankyrin repeats of NRARP extending the Notch1 ankyrin repeat stack. Mutations at the NRARP-NICD1 interface disrupted entry of the proteins into NTCs and abrogated feedback inhibition in Notch signaling assays in cultured cells. Forced expression of NRARP reduced the abundance of NICD in cells, suggesting that NRARP may promote the degradation of NICD. These studies establish the structural basis for NTC engagement by NRARP and provide insights into a critical negative feedback mechanism that regulates Notch signaling.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Multiprotein Complexes/metabolism , Neoplasm Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Notch/metabolism , Signal Transduction , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Jurkat Cells , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Mutation , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Structure, Quaternary , Receptors, Notch/chemistry , Receptors, Notch/genetics
5.
Mol Cell ; 74(2): 245-253.e6, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30826165

ABSTRACT

Transcription factors (TFs) control gene expression by binding DNA recognition sites in genomic regulatory regions. Although most forkhead TFs recognize a canonical forkhead (FKH) motif, RYAAAYA, some forkheads recognize a completely different (FHL) motif, GACGC. Bispecific forkhead proteins recognize both motifs, but the molecular basis for bispecific DNA recognition is not understood. We present co-crystal structures of the FoxN3 DNA binding domain bound to the FKH and FHL sites, respectively. FoxN3 adopts a similar conformation to recognize both motifs, making contacts with different DNA bases using the same amino acids. However, the DNA structure is different in the two complexes. These structures reveal how a single TF binds two unrelated DNA sequences and the importance of DNA shape in the mechanism of bispecific recognition.


Subject(s)
Cell Cycle Proteins/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Nucleic Acid Conformation , Repressor Proteins/chemistry , Amino Acid Sequence/genetics , Base Sequence/genetics , Binding Sites/genetics , Cell Cycle Proteins/genetics , Crystallography, X-Ray , DNA/genetics , DNA-Binding Proteins/genetics , Forkhead Transcription Factors , Gene Expression Regulation/genetics , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Nucleotide Motifs/genetics , Regulatory Sequences, Nucleic Acid/genetics , Repressor Proteins/genetics
6.
Cell ; 171(7): 1638-1648.e7, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29224781

ABSTRACT

Cleavage of membrane-anchored proteins by ADAM (a disintegrin and metalloproteinase) endopeptidases plays a key role in a wide variety of biological signal transduction and protein turnover processes. Among ADAM family members, ADAM10 stands out as particularly important because it is both responsible for regulated proteolysis of Notch receptors and catalyzes the non-amyloidogenic α-secretase cleavage of the Alzheimer's precursor protein (APP). We present here the X-ray crystal structure of the ADAM10 ectodomain, which, together with biochemical and cellular studies, reveals how access to the enzyme active site is regulated. The enzyme adopts an unanticipated architecture in which the C-terminal cysteine-rich domain partially occludes the enzyme active site, preventing unfettered substrate access. Binding of a modulatory antibody to the cysteine-rich domain liberates the catalytic domain from autoinhibition, enhancing enzymatic activity toward a peptide substrate. Together, these studies reveal a mechanism for regulation of ADAM activity and offer a roadmap for its modulation.


Subject(s)
ADAM10 Protein/chemistry , Amyloid Precursor Protein Secretases/chemistry , Membrane Proteins/chemistry , Proteolysis , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Crystallography, X-Ray , Humans , Membrane Proteins/metabolism , Models, Molecular , Receptors, Notch/metabolism , Signal Transduction
7.
PLoS One ; 12(8): e0184271, 2017.
Article in English | MEDLINE | ID: mdl-28859178

ABSTRACT

The Sortase family of transpeptidases are found in numerous gram-positive bacteria and involved in divergent physiological processes including anchoring of surface proteins to the cell wall as well as pili assembly. As essential proteins, sortase enzymes have been the focus of considerable interest for the development of novel anti-microbials, however, more recently their function as unique transpeptidases has been exploited for the synthesis of novel bio-conjugates. Yet, for synthetic purposes, SrtA-mediated conjugation suffers from the enzyme's inherently poor catalytic efficiency. Therefore, to identify SrtA variants with improved catalytic efficiency, we used directed evolution to select a catalytically enhanced SrtA enzyme. An analysis of improved SrtA variants in the context of sequence conservation, NMR and x-ray crystal structures, and kinetic data suggests a novel mechanism for catalysis involving large conformational changes that delivers substrate to the active site pocket. Indeed, using DEER-EPR spectroscopy, we reveal that upon substrate binding, SrtA undergoes a large scissors-like conformational change that simultaneously translates the sort-tag substrate to the active site in addition to repositioning key catalytic residues for esterification. A better understanding of Sortase dynamics will significantly enhance future engineering and drug discovery efforts.


Subject(s)
Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Cysteine Endopeptidases/chemistry , Directed Molecular Evolution , Staphylococcus aureus/enzymology , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Electron Spin Resonance Spectroscopy , Kinetics , Protein Conformation , Substrate Specificity
8.
Cell Rep ; 19(9): 1750-1757, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28564595

ABSTRACT

The ESCRT-III complex induces outward membrane budding and fission through homotypic polymerization of its core component Shrub/CHMP4B. Shrub activity is regulated by its direct interaction with a protein called Lgd in flies, or CC2D1A or B in humans. Here, we report the structural basis for this interaction and propose a mechanism for regulation of polymer assembly. The isolated third DM14 repeat of Lgd binds Shrub, and an Lgd fragment containing only this DM14 repeat and its C-terminal C2 domain is sufficient for in vivo function. The DM14 domain forms a helical hairpin with a conserved, positively charged tip, that, in the structure of a DM14 domain-Shrub complex, occupies a negatively charged surface of Shrub that is otherwise used for homopolymerization. Lgd mutations at this interface disrupt its function in flies, confirming functional importance. Together, these data argue that Lgd regulates ESCRT activity by controlling access to the Shrub self-assembly surface.


Subject(s)
Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Animals , Crystallography, X-Ray , Models, Molecular , Mutation/genetics , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Domains , Structure-Activity Relationship
9.
Cell ; 167(4): 1041-1051.e11, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27881302

ABSTRACT

Tetraspanins comprise a diverse family of four-pass transmembrane proteins that play critical roles in the immune, reproductive, genitourinary, and auditory systems. Despite their pervasive roles in human physiology, little is known about the structure of tetraspanins or the molecular mechanisms underlying their various functions. Here, we report the crystal structure of human CD81, a full-length tetraspanin. The transmembrane segments of CD81 pack as two largely separated pairs of helices, capped by the large extracellular loop (EC2) at the outer membrane leaflet. The two pairs of helices converge at the inner leaflet to create an intramembrane pocket with additional electron density corresponding to a bound cholesterol molecule within the cavity. Molecular dynamics simulations identify an additional conformation in which EC2 separates substantially from the transmembrane domain. Cholesterol binding appears to modulate CD81 activity in cells, suggesting a potential mechanism for regulation of tetraspanin function.


Subject(s)
Cholesterol/metabolism , Molecular Dynamics Simulation , Tetraspanin 28/chemistry , Tetraspanin 28/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Models, Chemical
10.
Ecotoxicology ; 24(5): 1102-11, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25794559

ABSTRACT

Monitoring internal crude oil exposure can assist the understanding of associated risks and impacts, as well as the effectiveness of restoration efforts. Under the auspices of a long-term monitoring program of Tundra Peregrine Falcons (Falco peregrinus tundrius) at Assateague (Maryland) and South Padre Islands (Texas), we measured the 16 parent (unsubstituted) polycyclic aromatic hydrocarbons (PAHs), priority pollutants identified by the United States Environmental Protection Agency and components of crude oil, in peripheral blood cells of migrating Peregrine Falcons from 2009 to 2011. The study was designed to assess the spatial and temporal trends of crude oil exposure associated with the 2010 Deepwater Horizon (DWH) oil spill which started 20 April 2010 and was capped on 15 July of that year. Basal PAH blood distributions were determined from pre-DWH oil spill (2009) and unaffected reference area sampling. This sentinel species, a predator of shorebirds and seabirds during migration, was potentially exposed to residual oil from the spill in the northern Gulf of Mexico. Results demonstrate an increased incidence (frequency of PAH detection and blood concentrations) of PAH contamination in 2010 fall migrants sampled along the Texas Gulf Coast, declining to near basal levels in 2011. Kaplan-Meier peak mean ∑PAH blood concentration estimates varied with age (Juveniles-16.28 ± 1.25, Adults-5.41 ± 1.10 ng/g, wet weight) and PAHs detected, likely attributed to the discussed Tundra Peregrine natural history traits. Increased incidence of fluorene, pyrene and anthracene, with the presence of alkylated PAHs in peregrine blood suggests an additional crude oil source after DWH oil spill. The analyses of PAHs in Peregrine Falcon blood provide a convenient repeatable method, in conjunction with ongoing banding efforts, to monitoring crude oil contamination in this avian predator.


Subject(s)
Falconiformes/metabolism , Petroleum Pollution/analysis , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Age Factors , Animal Migration , Animals , Environmental Monitoring/methods , Falconiformes/blood , Gulf of Mexico
11.
Article in English | MEDLINE | ID: mdl-24478383

ABSTRACT

The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition.


Subject(s)
Receptor, TIE-2/physiology , Receptors, Eph Family/physiology , Signal Transduction , Angiopoietins/chemistry , Angiopoietins/metabolism , Binding Sites , Enzyme Activation , Ligands , Models, Molecular , Protein Structure, Tertiary , Receptor, TIE-2/chemistry , Receptor, TIE-2/metabolism , Receptors, Eph Family/chemistry , Receptors, Eph Family/metabolism
12.
Proc Natl Acad Sci U S A ; 110(18): 7205-10, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23592718

ABSTRACT

Angiogenesis is a complex cellular process involving multiple regulatory growth factors and growth factor receptors. Among them, the ligands for the endothelial-specific tunica intima endothelial receptor tyrosine kinase 2 (Tie2) receptor kinase, angiopoietin-1 (Ang1) and Ang2, play essential roles in balancing vessel stability and regression during both developmental and tumor-induced angiogenesis. Despite possessing a high degree of sequence identity, Ang1 and Ang2 have distinct functional roles and cell-signaling characteristics. Here, we present the crystal structures of Ang1 both unbound and in complex with the Tie2 ectodomain. Comparison of the Ang1-containing structures with their Ang2-containing counterparts provide insight into the mechanism of receptor activation and reveal molecular surfaces important for interactions with Tie2 coreceptors and associated signaling proteins. Using structure-based mutagenesis, we identify a loop within the angiopoietin P domain, adjacent to the receptor-binding interface, which confers the specific agonist/antagonist properties of the molecule. We demonstrate using cell-based assays that an Ang2 chimera containing the Ang1 loop sequence behaves functionally similarly to Ang1 as a constitutive Tie2 agonist, able to efficiently dissociate the inhibitory Tie1/Tie2 complex and elicit Tie2 clustering and downstream signaling.


Subject(s)
Angiopoietin-1/chemistry , Angiopoietin-1/metabolism , Signal Transduction , Angiopoietin-2/chemistry , Angiopoietin-2/metabolism , Conserved Sequence , Crystallography, X-Ray , HEK293 Cells , Humans , Models, Molecular , Protein Structure, Tertiary , Receptor, TIE-1/chemistry , Receptor, TIE-1/metabolism , Receptor, TIE-2/chemistry , Receptor, TIE-2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Static Electricity , Structure-Activity Relationship
13.
Mol Cell ; 37(5): 643-55, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20227369

ABSTRACT

The Tie family of endothelial-specific receptor tyrosine kinases is essential for cell proliferation, migration, and survival during angiogenesis. Despite considerable similarity, experiments with Tie1- or Tie2-deficient mice highlight distinct functions for these receptors in vivo. The Tie2 receptor is further unique with respect to its structurally homologous ligands. Angiopoietin-2 and -3 can function as agonists or antagonists; angiopoietin-1 and -4 are constitutive agonists. To address the role of Tie1 in angiopoietin-mediated Tie2 signaling and determine the basis for the behavior of the individual angiopoietins, we used an in vivo FRET-based proximity assay to monitor Tie1 and -2 localization and association. We provide evidence for Tie1-Tie2 complex formation on the cell surface and identify molecular surface areas essential for receptor-receptor recognition. We further demonstrate that the Tie1-Tie2 interactions are dynamic, inhibitory, and differentially modulated by angiopoietin-1 and -2. Based on the available data, we propose a unified model for angiopoietin-induced Tie2 signaling.


Subject(s)
Angiopoietin-1/metabolism , Angiopoietin-2/metabolism , Endothelial Cells/enzymology , Receptor, TIE-1/metabolism , Receptor, TIE-2/metabolism , Signal Transduction , Cell Line , Cell Membrane/enzymology , Fluorescence Resonance Energy Transfer , Humans , Ligands , Models, Molecular , Mutation , Protein Conformation , Protein Multimerization , Protein Structure, Tertiary , RNA Interference , Receptor Cross-Talk , Receptor, TIE-1/chemistry , Receptor, TIE-1/genetics , Receptor, TIE-2/chemistry , Receptor, TIE-2/genetics , Recombinant Fusion Proteins/metabolism , Structure-Activity Relationship , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...