Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 813: 152424, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34942261

ABSTRACT

Neonicotinoids are a new type of highly water-soluble insecticide used in agricultural practices to eliminate pests. Neonicotinoids bind almost irreversibly to postsynaptic nicotinic acetylcholine receptors in the central nervous system of invertebrates, resulting in overstimulation, paralysis, and death. Imidacloprid, the most commonly used neonicotinoid, is often transported to nearby wetlands through subsurface tile drains and has been identified as a neurotoxin in several aquatic non-target organisms. The aim of the present study was to determine if imidacloprid could cross the blood-brain barrier in adult Northern Leopard frogs (Rana pipiens) following exposure to 0, 0.1, 1, 5, or 10 µg/L for 21 days. Additionally, we quantified the breakdown product of imidacloprid, imidacloprid-olefin, and conducted feeding trials to better understand how imidacloprid affects foraging behavior over time. Exposure groups had 12 to 313 times more imidacloprid in the brain relative to the control and breakdown products showed a dose-response relationship. Moreover, imidacloprid brain concentrations were approximately 14 times higher in the 10 µg/L treatment compared to the water exposure concentration, indicating imidacloprid can bioaccumulate in the amphibian brain. Reaction times to a food stimulus were 1.5 to 3.2 times slower among treatment groups compared to the control. Furthermore, there was a positive relationship between mean response time and log-transformed imidacloprid brain concentration. These results indicate imidacloprid can successfully cross the blood-brain barrier and bioaccumulate in adult amphibians. Our results also provide insights into the relationship between imidacloprid brain concentration and subsequent altered foraging behavior.


Subject(s)
Insecticides , Water Pollutants, Chemical , Animals , Brain , Insecticides/analysis , Insecticides/toxicity , Larva , Neonicotinoids/analysis , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Rana pipiens , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Article in English | MEDLINE | ID: mdl-27255639

ABSTRACT

Astrocytes play a vital role in brain lipid metabolism; however the impact of the phenotypic shift in astrocytes to a reactive state on arachidonic acid metabolism is unknown. Therefore, we determined the impact of dibutyryl-cAMP (dBcAMP) treatment on radiolabeled arachidonic acid ([1-(14)C]20:4n-6) and palmitic acid ([1-(14)C]16:0) uptake and metabolism in primary cultured murine cortical astrocytes. In dBcAMP treated astrocytes, total [1-(14)C]20:4n-6 uptake was increased 1.9-fold compared to control, while total [1-(14)C]16:0 uptake was unaffected. Gene expression of long-chain acyl-CoA synthetases (Acsl), acyl-CoA hydrolase (Acot7), fatty acid binding protein(s) (Fabp) and alpha-synuclein (Snca) were determined using qRT-PCR. dBcAMP treatment increased expression of Acsl3 (4.8-fold) and Acsl4 (1.3-fold), which preferentially use [1-(14)C]20:4n-6 and are highly expressed in astrocytes, consistent with the increase in [1-(14)C]20:4n-6 uptake. However, expression of Fabp5 and Fabp7 were significantly reduced by 25% and 45%, respectively. Acot7 (20%) was also reduced, suggesting dBcAMP treatment favors acyl-CoA formation. dBcAMP treatment enhanced [1-(14)C]20:4n-6 (2.2-fold) and [1-(14)C]16:0 (1.6-fold) esterification into total phospholipids, but the greater esterification of [1-(14)C]20:4n-6 is consistent with the observed uptake through increased Acsl, but not Fabp expression. Although total [1-(14)C]16:0 uptake was not affected, there was a dramatic decrease in [1-(14)C]16:0 in the free fatty acid pool as esterification into the phospholipid pool was increased, which is consistent with the increase in Acsl3 and Acsl4 expression. In summary, our data demonstrates that dBcAMP treatment increases [1-(14)C]20:4n-6 uptake in astrocytes and this increase appears to be due to increased expression of Acsl3 and Acsl4 coupled with a reduction in Acot7 expression.


Subject(s)
Arachidonic Acid/analysis , Astrocytes/chemistry , Bucladesine/pharmacology , Palmitic Acid/analysis , Animals , Arachidonic Acid/chemistry , Astrocytes/cytology , Astrocytes/drug effects , Cells, Cultured , Fatty Acid-Binding Proteins/metabolism , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Lipid Metabolism/drug effects , Mice , Palmitic Acid/chemistry
3.
Lipids ; 51(5): 549-60, 2016 05.
Article in English | MEDLINE | ID: mdl-26797754

ABSTRACT

C57BL/6 and Swiss Webster mice are used to study lipid metabolism, although differences in fatty acid uptake between these strains have not been reported. Using a steady state kinetic model, [1-(14)C]16:0, [1-(14)C]20:4n-6, or [1-(14)C]22:6n-3 was infused into awake, adult male mice and uptake into liver, heart, and brain determined. The integrated area of [1-(14)C]20:4n-6 in plasma was significantly increased in C57BL/6 mice, but [1-(14)C]16:0 and [1-(14)C]22:6n-3 were not different between groups. In heart, uptake of [1-(14)C]20:4n-6 was increased 1.7-fold in C57BL/6 mice. However, trafficking of [1-(14)C]22:6n-3 into the organic fraction of heart was significantly decreased 33 % in C57BL/6 mice. Although there were limited differences in fatty acid tracer trafficking in liver or brain, [1-(14)C]16:0 incorporation into liver neutral lipids was decreased 18 % in C57BL/6 mice. In heart, the amount of [1-(14)C]16:0 and [1-(14)C]22:6n-3 incorporated into total phospholipids were decreased 45 and 49 %, respectively, in C57BL/6 mice. This was accounted for by a 53 and 37 % decrease in [1-(14)C]16:0 and 44 and 52 % decrease in [1-(14)C]22:6n-3 entering ethanolamine glycerophospholipids and choline glycerophospholipids, respectively. In contrast, there was a significant increase in [1-(14)C]20:4n-6 esterification into all heart phospholipids of C57BL/6 mice. Although changes in uptake were limited to heart, several significant differences were found in fatty acid trafficking into heart, liver, and brain phospholipids. In summary, our data demonstrates differences in tissue fatty acid uptake and trafficking between mouse strains is an important consideration when carrying out fatty acid metabolic studies.


Subject(s)
Brain/metabolism , Fatty Acids/metabolism , Liver/metabolism , Myocardium/metabolism , Animals , Arachidonic Acid/metabolism , Docosahexaenoic Acids/metabolism , Esterification , Male , Mice, Inbred C57BL , Mice, Inbred Strains , Palmitic Acid/metabolism , Phospholipids/metabolism
4.
J Environ Pathol Toxicol Oncol ; 7(7-8): 363-72, 1987.
Article in English | MEDLINE | ID: mdl-3694484

ABSTRACT

The granular activated carbon adsorption unit process in drinking water treatment typically removes purgeable organic compounds for time periods on the order of a few weeks. Experimental evidence indicates that less volatile compounds of generally higher molecular weight than the purgeable fraction, but still detectable by gas chromatography, are efficiently removed for longer periods. Field data substantiate this. Explanatory mechanisms may include stronger adsorption affinities or biodegradation. Non-gas chromatographable, higher molecular weight materials such as humic acids, as measured by Total Organic Carbon (TOC) or trihalomethane formation potential, revert to lower removal efficiencies. Biodegradation may be responsible for a continued long term removal of a fraction of these materials.


Subject(s)
Carbon , Hydrocarbons , Water Supply/standards , Adsorption , Chromatography, Gas , Louisiana , Michigan , Molecular Weight , Water Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...