Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(4): 1049-1052, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359250

ABSTRACT

Ultrashort pulses at infrared wavelengths are advantageous when studying light-matter interaction. For the spectral region around 2 µm, multi-stage parametric amplification is the most common method to reach higher pulse energies. Yet it has been a key challenge for such systems to deliver waveform-stable pulses without active stabilization and synchronization systems. Here, we present a different approach for the generation of infrared pulses centered at 1.8 µm with watt-level average power utilizing only a single nonlinear crystal. Our laser system relies on a well-established Yb:YAG thin-disk technology at 1.03 µm wavelength combined with a hybrid two-stage broadening scheme. We show the high-power downconversion process via intra-pulse difference frequency generation, which leads to excellent passive stability of the carrier envelope phase below 20 mrad-comparable to modern oscillators. It also provides simple control over the central wavelength within a broad spectral range. The developed infrared source is employed to generate a multi-octave continuum from 500 nm to 2.5 µm opening the path toward sub-cycle pulse synthesis with extreme waveform stability.

2.
Opt Express ; 31(15): 24821-24834, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475300

ABSTRACT

We demonstrate a mid-infrared optical parametric chirped pulse amplifier (OPCPA), delivering 2.1 µm center wavelength pulses with 20 fs duration and 4.9 mJ energy at 10 kHz repetition rate. This self-seeded system is based on a kW-class Yb:YAG thin-disk amplifier driving a CEP stable short-wavelength-infrared (SWIR) generation and three consecutive OPCPA stages. Our SWIR source achieves an average power of 49 W, while still maintaining excellent phase and average power stability with sub-100 mrad carrier-envelope-phase-noise and 0.8% average power fluctuations. These parameters enable the OPCPA setup to drive attosecond pump probe spectroscopy experiments with photon energies in the water window.

SELECTION OF CITATIONS
SEARCH DETAIL
...