Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932119

ABSTRACT

Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic effects in exogenous applications. In this study, we evaluated the virostatic potential of four types of CKs including, N6-isopentenyladenine (iP), N6-isopentenyladenosine (iPR), N6-isopentenyladenosine-5'monophosphate (iPMP), and 2-methylthiol-N6-isopentenyladenosine (2MeSiPR) against the ranavirus type species, frog virus 3 (FV3). Following concurrent treatment and infection, iP and iPR reduced viral replication by 33.8% and 59.6%, respectively, in plaque formation assays. A decrease in viral replication was also observed when CK exposure was limited to 12 h prior to infection, where iP and iPR reduced viral replication by 31% and 23.75%, respectively. Treatment with iP and iPR was also marked by 48% and 60% decreases in viral load over 72 h, respectively, as measured in single step growth curves. Plaque morphology was altered in vitro, as iP and iPR treatment increased plaque area by 83% and 112% with lytic zone formation also becoming more prevalent in corresponding treatments. Treatment with iPMP and 2MeSiPR resulted in no effect on viral kinetics in vitro. The results of this study are the first to provide evidence of CK antiviral activity against a DNA virus and highlight the importance of their structure for therapeutic investigations.


Subject(s)
Antiviral Agents , Cytokinins , Ranavirus , Viral Plaque Assay , Virus Replication , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Ranavirus/physiology , Ranavirus/drug effects , Cytokinins/pharmacology , Cytokinins/metabolism , Cell Line
2.
Physiol Rep ; 11(23): e15870, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38040455

ABSTRACT

Cytokinins (CTKs) are a diverse collection of evolutionarily conserved adenine-derived signaling molecules classically studied as phytohormones; however, their roles and production have been less studied in mammalian systems. Skeletal muscles are sensitive to cellular cues such as inflammation and in response, alter their secretome to regulate the muscle stem cell and myofiber niche. Using cultured C2C12 muscle cells, we profiled CTK levels to understand (1) whether CTKs are part of the muscle secretome and (2) whether CTKs are responsive to cellular stress. To induce cellular stress, C2C12 myotubes were treated with lipopolysaccharides (LPS) for 24 h and then media and cell fractions were collected for ultra high-performance liquid chromatography tandem mass spectrometry with electrospray ionization (UHPLC-(ESI+)-HRMS/MS) for metabolomics and CTK profiling. Across LPS-treated and control cells, 11 CTKs were detected in the extracellular space while 6 were detected intracellularly. We found that muscle cells are enriched in isopentenyladenine (iP) species (from free base, riboside to nucleotide forms), and that extracellular levels are increased after LPS treatment. Our study establishes that muscle cells express various forms of CTKs, and that CTK levels are responsive to LPS-induced cell stress, suggesting a role for CTKs in intra- and extracellular signaling of mammalian cells.


Subject(s)
Cytokinins , Lipopolysaccharides , Cytokinins/chemistry , Lipopolysaccharides/pharmacology , Adenine/pharmacology , Muscle Fibers, Skeletal
3.
Viruses ; 15(8)2023 08 10.
Article in English | MEDLINE | ID: mdl-37632058

ABSTRACT

Viruses are obligate intracellular parasites that alter host metabolic machinery to obtain energy and macromolecules that are pivotal for replication. Ranavirus, including the type species of the genus frog virus 3 (FV3), represent an ecologically important group of viruses that infect fish, amphibians, and reptiles. It was established that fatty acid synthesis, glucose, and glutamine metabolism exert roles during iridovirus infections; however, no information exists regarding the role of purine metabolism. In this study, we assessed the impact of exogenously applied purines adenine, adenosine, adenosine 5'-monophosphate (AMP), inosine 5'-monophosphate (IMP), inosine, S-adenosyl-L-homocysteine (SAH), and S-adenosyl-L-methionine (SAM) on FV3 replication. We found that all compounds except for SAH increased FV3 replication in a dose-dependent manner. Of the purines investigated, adenine and adenosine produced the most robust response, increasing FV3 replication by 58% and 51%, respectively. While all compounds except SAH increased FV3 replication, only adenine increased plaque area. This suggests that the stimulatory effect of adenine on FV3 replication is mediated by a mechanism that is at least in part independent from the other compounds investigated. Our results are the first to report a response to exogenously applied purines and may provide insight into the importance of purine metabolism during iridoviral infection.


Subject(s)
Ranavirus , Animals , Purines , Adenine , Adenosine , Inosine , Nucleotides
4.
Plant Direct ; 5(2): e00308, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33644633

ABSTRACT

Cytokinins (CKs) play a fundamental role in regulating dynamics of organ source/sink relationships during plant development, including flowering and seed formation stages. As a result, CKs are key drivers of seed yield. The cytokinin oxidase/dehydrogenase (CKX) is one of the critical enzymes responsible for regulating plant CK levels by causing their irreversible degradation. Variation of CKX activity is significantly correlated with seed yield in many crop species while in soybean (Glycine max L.), the possible associations between CKX gene family members (GFMs) and yield parameters have not yet been assessed. In this study, 17 GmCKX GFMs were identified, and natural variations among GmCKX genes were probed among soybean cultivars with varying yield characteristics. The key CKX genes responsible for regulating CK content during seed filling stages of reproductive development were highlighted using comparative phylogenetics, gene expression analysis and CK metabolite profiling. Five of the seventeen identified GmCKX GFMs, showed natural variations in the form of single nucleotide polymorphisms (SNPs). The gene GmCKX7-1, with high expression during critical seed filling stages, was found to have a non-synonymous mutation (H105Q), on one of the active site residues, Histidine 105, previously reported to be essential for co-factor binding to maintain structural integrity of the enzyme. Soybean lines with this mutation had higher CK content and desired yield characteristics. The potential for marker-assisted selection based on the identified natural variation within GmCKX7-1, is discussed in the context of hormonal control that can result in higher soybean yield.

5.
FASEB Bioadv ; 1(5): 320-331, 2019 May.
Article in English | MEDLINE | ID: mdl-32123835

ABSTRACT

Cytokinins (CKs) encompass a group of phytohormones, known to orchestrate many critical processes in plant development. Excluding Archaea, CKs are pervasive among all kingdoms, but much less is reported about their metabolism beyond plants. Recent evidence from mammalian tissues indicates the presence of six additional CK forms beyond the previously identified, single mammalian CK, N6-isopentenyladenosine (i6A). There is limited understanding of CK biosynthesis pathways in mammalian systems; therefore, human cervical cancer (HeLa) cells were used to further characterize CK processing by tracking the interconversion of CKs into their various structural derivatives in mammalian cells in a time-course study. Through high-performance liquid chromatography-positive electrospray ionization-tandem mass spectrometry (HPLC-(+ESI)-MS/MS), we document changes in the functional profiles of endogenous CKs in a human cell line following metabolism by HeLa cell cultures. The nucleotide CK fraction (iPRP) was found exclusively within the cell pellet (0.34 pmol/106 cells), and the active free base (FB) form (iP) and riboside fraction (iPR) were found in greater abundance extracellularly (1.67 and 0.10 nmol/L respectively). For further confirmation, we demonstrate that HeLa cells metabolize an exogenously supplied CK, N6-benzyladenosine (BAR). In the HeLa culture supernatant, a 12-fold decrease in BAR concentration was observed within the first 24 hours of incubation accompanied by a fivefold increase in the FB form, N6-benzyladenine (BA). These findings support the hypothesis that HeLa cells have the enzymatic pathways required for the metabolism of both endogenous and exogenous CKs.

6.
FASEB J ; : fj201800347, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29894666

ABSTRACT

Cytokinins (CKs) are a group of phytohormones essential to plant growth and development. The presence of these N6-modified adenine derivatives has also been documented in other groups of organisms, including bacteria, fungi, and insects. Thus far, however, only a single CK, N6-(Δ2-isopentenyl) adenine-9-riboside (iPR), has been identified in mammals. In plants, the nucleotide form of isopentenyladenine [iPR (either mono-, di-, or tri-) phosphate (iPRP)] is the first form of CK synthesized, and it is further modified to produce other CK types. To determine if a similar biosynthesis pathway exists in mammals, we tested for the presence of 27 CKs in a wide selection of canine organs using HPLC electrospray ionization-tandem mass spectrometry. Seven forms of CK were detected in the majority of the analyzed samples, including iPR, iPRP, cis-zeatin-9-riboside, cis-zeatin-9-riboside-5' (either mono-, di-, or triphosphate), 2-methylthio-N6-isopentenyladenine, 2-methylthio-N6-isopentenyladenosine, and 2-methylthio-zeatin. Total CK concentrations ranged from 1.96 pmol/g fresh weight (adrenal glands) to 1.40 × 103 pmol/g fresh weight (thyroid). The results of this study provide evidence that mammalian cells, like plant cells, can synthesize and process a diverse set of CKs including cis- and methylthiol-type CKs.-Seegobin, M., Kisiala, A., Noble, A., Kaplan, D., Brunetti, C., Emery, R. J. N. Canis familiaris tissues are characterized by different profiles of cytokinins typical of tRNA degradation pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...