Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12118, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37495628

ABSTRACT

Taiwan, an island located in the northwest Pacific region, is influenced by heavy rainfall events during warm seasons, particularly from June to August. Interaction of precipitating clouds with the complex topography results in inhomogeneous and intense rainfall over Taiwan. Hence, the present study investigates the regional discrepancies in the microphysical characteristics of summer season rainfall over (north, south, east, and central) Taiwan using 9 years (2014-2022) of GPM DPR measurements. The results showed clear distinctions in the precipitation and raindrop size distributions over the north, south, east, and central Taiwan. The contoured frequency by altitude diagrams (CFADs) of radar reflectivity, rainfall rate, drop diameter, and concentration clearly infer the dominance of large-size super cooled liquid and ice particles above the melting layer and rain particles below the melting layers in the south and central Taiwan. Central (north) Taiwan is dominated by large-size (small) drops among four regions. Higher concentrations of large drops over central Taiwan (principally from convective precipitation) and south Taiwan (primarily from stratiform precipitation) is attributed to higher rainfall amounts over these two regions than the north and east Taiwan. Furthermore, irrespective of precipitation type and geographic region, summer monsoon rainfall over Taiwan is dominated by coalescence and breakup processes. The microphysical characteristics of summer season rainfall addressed in this study could assist in refining the cloud modeling simulations over complex topography in Taiwan.

2.
Sci Rep ; 13(1): 4432, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932090

ABSTRACT

Northwestern Pacific (NWP) tropical cyclones (TCs) impose a severe threat to the life and economy of the people living in East Asian countries. The microphysical features, mainly the raindrop size distributions (RSD) of TCs that improve the modeling simulation and rainfall estimation algorithms, are limited to case studies, and an extensive understanding of TCs' RSD is still scarce over the northwest Pacific. Here, we examine a comprehensive outlook on disparities in microphysical attributes of NWP TCs with radial distance and storm type, using sixteen years of disdrometer, ground-based radar, and reanalysis datasets in north Taiwan. We find that dominant stratiform precipitation in the inner rainbands leads to the occurrence of more bigger drops in the inner rainbands than the inner core and outer rainbands. Moreover, a decrease in mass-weighted mean diameter and rainfall rate with radial distance is associated with a reduction in moisture availability for various circumstances, and this association is deceptive in intense storms. Our findings give an insight into crucial processes governing microphysical inequalities in different regions of NWP TCs, with implications for the ground-based and remote-sensing rainfall estimation algorithms.

3.
Sci Rep ; 9(1): 15862, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676836

ABSTRACT

Rainfall erosivity (or water erosion) has severe implications on agriculture, water, and land use management. Though, there were Rainfall erosivity studies on regional and global scale, tropical cyclones' Rainfall erosivity is poorly assessed and have not been documented for one of the most cyclones affecting regions of the world like Taiwan. Here, using 15-years of raindrop size distributions (RSD) and 60-years of hourly rain gauges data, we estimated cyclones (also called typhoons) rainfall erosivity over Taiwan, and establish that typhoons' mean rainfall erosivity is higher than the global mean rainfall erosivity. Moreover, regional variability of typhoons rainfall erosivity showed an increasing pattern from north to south (Taipei to Pingtung), with relatively higher values over eastern and southern parts of Taiwan. The annual mean erosivity of typhoons rainfall showed raising trends over eastern and southern Taiwan during 1958-2017. Our results provide an insight in assessing the land use and agricultural management for Taiwan.

SELECTION OF CITATIONS
SEARCH DETAIL