Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 96(4): 1375-1387, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29474563

ABSTRACT

Heat stress (HS) and immune challenges negatively impact nutrient allocation and metabolism in swine, especially due to elevated heat load. In order to assess the effects of HS during Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection on metabolism, 9-wk old crossbred barrows were individually housed, fed ad libitum, divided into four treatments: thermo-neutral (TN), thermo-neutral PRRSV infected (TP), HS, and HS PRRSV infected (HP), and subjected to two experimental phases. Phase 1 occurred in TN conditions (22 °C) where half the animals were infected with PRRS virus (n = 12), while the other half (n = 11) remained uninfected. Phase 2 began, after 10 d with half of the uninfected (n = 6) and infected groups (n = 6) transported to heated rooms (35 °C) for 3 d of continuous heat, while the rest remained in TN conditions. Blood samples were collected prior to each phase and at trial completion before sacrifice. PPRS viral load indicated only infected animals were infected. Individual rectal temperature (Tr), respiration rates (RR), and feed intakes (FI) were determined daily. Pigs exposed to either challenge had an increased Tr, (P < 0.0001) whereas RR increased (P < 0.0001) with HS, compared to TN. ADG and BW decreased with challenges compared to TN, with the greatest loss to HP pigs. Markers of muscle degradation such as creatine kinase, creatinine, and urea nitrogen were elevated during challenges. Blood glucose levels tended to decrease in HS pigs. HS tended to decrease white blood cell (WBC) and lymphocytes and increase monocytes and eosinophils during HS. However, neutrophils were significantly increased (P < 0.01) during HP. Metabolic flexibility tended to decrease in PRRS infected pigs as well as HS pigs. Fatty acid oxidation measured by CO2 production decreased in HP pigs. Taken together, these data demonstrate the additive effects of the HP challenge compared to either PRRSV or HS alone.


Subject(s)
Heat-Shock Response/immunology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine respiratory and reproductive syndrome virus/immunology , Swine/metabolism , Animals , Hot Temperature , Male , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Reactive Oxygen Species/metabolism , Swine/growth & development , Swine/immunology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...