Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters










Publication year range
1.
Mol Metab ; 30: 72-130, 2019 12.
Article in English | MEDLINE | ID: mdl-31767182

ABSTRACT

BACKGROUND: The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent ß-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW: In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS: Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Obesity/metabolism , Receptors, Glucagon/metabolism
2.
Obes Rev ; 17(9): 795-809, 2016 09.
Article in English | MEDLINE | ID: mdl-27272117

ABSTRACT

Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.


Subject(s)
Adipose Tissue/physiology , Bariatric Surgery , Obesity/surgery , Adipocytes/metabolism , Adipokines/blood , Adipokines/metabolism , Animals , Catecholamines/blood , Disease Models, Animal , Humans , Inflammation , Insulin/blood , Insulin Resistance
3.
Mol Metab ; 4(6): 437-60, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26042199

ABSTRACT

BACKGROUND: The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. SCOPE OF REVIEW: In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. MAJOR CONCLUSIONS: In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.

4.
Int J Obes (Lond) ; 39(8): 1310-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25869599

ABSTRACT

BACKGROUND/OBJECTIVES: Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (for example, night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared with the non-disrupted population. However, it is unclear whether the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. SUBJECTS/METHODS: Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG), in mouse models of genetic and environmental circadian disruption. RESULTS: VSG led to a reduction in body weight and fat mass in both Clock(Δ19) mutant and constant-light mouse models (P<0.05), resulting in an overall metabolic improvement independent of circadian disruption. Interestingly, the decrease in body weight occurred without altering diurnal feeding or activity patterns (P>0.05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (P<0.05). CONCLUSIONS: Together these data demonstrate that VSG is an effective treatment for the obesity associated with circadian disruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, as the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption.


Subject(s)
Gastrectomy , Obesity/metabolism , Sleep Deprivation/metabolism , Animals , Circadian Rhythm , Disease Models, Animal , Energy Metabolism , Mice , Sleep Deprivation/physiopathology , Weight Loss
5.
Int J Obes (Lond) ; 39(5): 791-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25349057

ABSTRACT

OBJECTIVES: Obesity-related cancers represent public health burdens of the first order. Nevertheless, suitable mouse models to unravel molecular mechanisms linking obesity to human cancer are still not available. One translational model is the immunocompromised Foxn1 (winged-helix/forkead transcription factor) nude mouse transplanted with human tumor xenografts. However, most xenograft studies are conducted in nude mice on an in-bred BALB/c background that entails protection from diet-induced obesity. To overcome such resistance to obesity and its sequelae, we here propose the dual strategy of utilizing Foxn1 nude mice on a C57BL/6 background and housing them at their thermoneutral zone. METHODS: C57BL/6 nude and corresponding wild-type mice, housed at 23 or 33 °C, were subjected to either low-fat diet or high-fat diet (HFD). Energy expenditure, locomotor activity, body core temperature, respiratory quotient as well as food and water intake were analyzed using indirect calorimetry. Immune function at different housing temperatures was assessed by using an in vivo cytokine capture assay. RESULTS: Our data clearly demonstrate that conventional housing protects C57BL/6 nude mice from HFD-induced obesity, potentially via increased energy expenditure. In contrast, HFD-fed C57BL/6 nude mice housed at thermoneutral conditions develop adiposity, increased hepatic triglyceride accumulation, adipose tissue inflammation and glucose intolerance. Moreover, increased circulating levels of lipopolysaccharide-driven cytokines suggest a greatly enhanced immune response in C57BL/6 nude mice housed at thermoneutrality. CONCLUSION: Our data reveals mild cold stress as a major modulator for energy and body weight homeostasis as well as immune function in C57BL/6 nude mice. Adjusting housing temperatures to the thermoneutral zone may ultimately be key to successfully study growth and progression of human tumors in a diet-induced obese environment.


Subject(s)
Housing, Animal/standards , Inflammation/immunology , Neoplasms/immunology , Obesity/metabolism , Temperature , Animals , Body Weight , Cold Temperature , Diet, High-Fat , Energy Metabolism , Immunocompromised Host , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasms/pathology , Obesity/etiology , Stress, Physiological , Transplantation, Heterologous/methods
6.
Int J Obes (Lond) ; 38(2): 192-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23736358

ABSTRACT

BACKGROUND: Obesity has a complicated metabolic pathology, and defining the underlying mechanisms of obesity requires integrative studies with molecular end points. Real-time quantitative PCR (RT-qPCR) is a powerful tool that has been widely utilized. However, the importance of using carefully validated reference genes in RT-qPCR seems to have been overlooked in obesity-related research. The objective of this study was to select a set of reference genes with stable expressions to be used for RT-qPCR normalization in rats under fasted vs re-fed and chow vs high-fat diet (HFD) conditions. DESIGN: Male long-Evans rats were treated under four conditions: chow/fasted, chow/re-fed, HFD/fasted and HFD/re-fed. Expression stabilities of 13 candidate reference genes were evaluated in the rat hypothalamus, duodenum, jejunum and ileum using the ReFinder software program. The optimal number of reference genes needed for RT-qPCR analyses was determined using geNorm. RESULTS: Using geNorm analysis, we found that it was sufficient to use the two most stably expressed genes as references in RT-qPCR analyses for each tissue under specific experimental conditions. B2M and RPLP0 in the hypothalamus, RPS18 and HMBS in the duodenum, RPLP2 and RPLP0 in the jejunum and RPS18 and YWHAZ in the ileum were the most suitable pairs for a normalization study when the four aforementioned experimental conditions were considered. CONCLUSIONS: Our study demonstrates that gene expression levels of reference genes commonly used in obesity-related studies, such as ACTB or RPS18, are altered by changes in acute or chronic energy status. These findings underline the importance of using reference genes that are stable in expression across experimental conditions when studying the rat hypothalamus and intestine, because these tissues have an integral role in the regulation of energy homeostasis. It is our hope that this study will raise awareness among obesity researchers on the essential need for reference gene validation in gene expression studies.


Subject(s)
Hypothalamus/metabolism , Intestinal Mucosa/metabolism , Obesity/genetics , Ribosomal Proteins/metabolism , Animals , Diet, High-Fat , Fasting , Gene Expression Profiling , Genetic Markers , Male , Obesity/metabolism , Rats , Rats, Long-Evans , Real-Time Polymerase Chain Reaction , Ribosomal Proteins/genetics
7.
Int J Obes (Lond) ; 38(3): 349-56, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23736372

ABSTRACT

BACKGROUND: Much recent evidence suggest that obesity and related comorbidities contribute to cognitive decline, including the development of non age-related dementia and Alzheimer's disease. Obesity is a serious threat to public health, and few treatments offer proven long-term weight loss. In fact, bariatric surgery remains the most effective long-term therapy to reduce weight and alleviate other aspects of the metabolic syndrome (MetS). Unlike the demonstrated benefits of caloric restriction to prevent weight gain, few if any studies have compared various means of weight loss on central nervous system function and hippocampal-dependent cognitive processes. DESIGN AND RESULTS: Our studies comprise the first direct comparisons of caloric restriction to two bariatric surgeries (Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG)) on cognitive function. Weight loss following caloric restriction, RYGB and VSG was associated with generalized improvements in metabolic health and hippocampal-dependent learning, as measured in the radial arm maze and spontaneous alternation tests. However, VSG-treated rats exhibited deficits on spatial learning tasks in the Morris water maze. In addition, whereas VSG animals had elevated hippocampal inflammation, comparable to that of obese controls, RYGB and calorie-restricted (pair-fed, PF) controls exhibited an amelioration of inflammation, as measured by the microglial protein ionized calcium binding adaptor molecule 1 (IBA1). We also assessed whether GHR (ghrelin) replacement would attenuate hippocampal inflammation in VSG, as post-surgical GHR levels are significantly reduced in VSG relative to RYGB and PF rats. However, GHR treatment did not attenuate the hippocampal inflammation. CONCLUSION: Although VSG was comparably effective at reducing body weight and improving glucose regulation as RYGB, VSG did not appear to confer an equal benefit on cognitive function and markers of inflammation.


Subject(s)
Caloric Restriction , Cognition Disorders/pathology , Gastrectomy , Gastric Bypass , Hippocampus/pathology , Inflammation/pathology , Weight Loss , Animals , Blood Glucose , Body Weight , Cognition Disorders/surgery , Disease Models, Animal , Gastrectomy/methods , Homeostasis , Inflammation/surgery , Male , Maze Learning , Rats , Rats, Long-Evans , Remission Induction
8.
Physiol Rep ; 1(2)2013 Aug.
Article in English | MEDLINE | ID: mdl-23914298

ABSTRACT

Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2 mice received control surgery, subcutaneous fat removal or hetero-transplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks post-surgery. Adipose mass and portal adipokines, cytokines, lipids and insulin were measured from samples collected at 5 weeks post-surgery. Auto- and hetero- transplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration and reduced portal lipids and hepatic triglycerides compared with HFD controls. Hetero-transplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in adipose tissue, however altered hepatic lipid regulation may play a contributory role.

9.
Neurogastroenterol Motil ; 25(8): 700-5, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23663526

ABSTRACT

BACKGROUND: Increases in L-cell release of GLP-1 are proposed to serve as a negative feedback signal for postprandial changes in gastric emptying and/or motility. Previous ex vivo data suggests that direct electrical stimulation (E-stim) of ileal segments stimulates secretion of GLP-1. This suggests potential feed-forward increases in GLP-1 driven by intestinal neuronal and/or motor activity. METHODS: To determine if E-stim could increase GLP-1 levels in an in vivo setting, we administered E-stim and nutrients to male Long- Evans rats (300-350 g) under general anesthesia. KEY RESULTS: Nutrient infusion into the duodenum or ileum significantly increased plasma GLP-1 levels, but E-stim applied to these locations did not (P < 0.05). However, the combination of E-stim and nutrient infusion, in either the ileum or duodenum, significantly increased plasma GLP-1 when compared to nutrient infusion alone (P < 0.05), and this effect was not blocked by either norepinephrine or atropine. To test the impact of intestinal motor activity, the effect of extra-luminal mechanical stimulation (M-stim) on GLP-1 levels was assessed. In the duodenum, but not the ileum, M-stim plus nutrient infusion significantly increased GLP-1 over nutrient infusion or M-stim alone (P < 0.05). CONCLUSIONS & INFERENCES: Thus, both E- and M-stim of the duodenum, but only E-stim of the ileum augmented nutrient-stimulated GLP-1 release. These data demonstrate that factors beyond enteral nutrients could contribute to the regulation of GLP-1 secretion.


Subject(s)
Duodenum/metabolism , Food , Glucagon-Like Peptide 1/metabolism , Ileum/metabolism , Animals , Electric Stimulation/methods , Glucagon-Like Peptide 1/blood , Male , Rats , Rats, Long-Evans
10.
Int J Obes (Lond) ; 37(6): 853-60, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22964790

ABSTRACT

OBJECTIVE: High-fat diets (HFDs) result in increased body weight. However, this is not uniform and determining the factors that make some animals or individual more susceptible to this diet-induced weight gain is a critical research question. The expansion of white adipose tissue (WAT) associated with weight gain requires high rates of angiogenesis to support the expanding tissue mass. We hypothesized that diet-induced obese (DIO) mice have a greater capacity for WAT angiogenesis and remodeling than diet-resistant (DR) mice at a young age, before age or DIO. DESIGN: We measured body weight and body composition by nuclear magnetic resonance. We compared the expression of genes related to lipid metabolism, angiogenesis and inflammation by real-time, quantitative PCR and PCR arrays. WAT morphology and distribution of adipocyte size were analyzed. The level of hypoxia and vascular density was assessed by immunohistochemistry in WAT of young mice. RESULTS: C57Bl/6 mice were DIO and FVB/N (FVB) mice DR after 8 weeks on a low-fat diet or HFD. However, C57Bl/6 mice had lower body weight, lower adiposity, smaller adipocytes and decreased leptin and lipogenic genes expression in adipose tissue than FVB mice at 9 weeks of age on a chow diet. Despite having smaller adipocytes, the level of hypoxia and the expression of pro-angiogenesis genes were higher in WAT of young C57Bl/6 mice than young FVB mice. In addition, expression of genes related to macrophages and their recruitment, and to proinflammatory cytokines, was significantly higher in WAT of young C57Bl/6 mice than young FVB mice. CONCLUSION: These data suggest that the potential for WAT remodeling in early period of growth is higher in C57Bl/6 mice as compared with FVB mice, and we hypothesize that it may contribute to the increased susceptibility to DIO of C57Bl/6 mice.


Subject(s)
Adipose Tissue, White/metabolism , Adipose Tissue, White/physiopathology , Hypoxia/metabolism , Inflammation/metabolism , Insulin Resistance , Obesity/metabolism , Adipocytes , Adipose Tissue, White/pathology , Angiogenesis Inducing Agents , Animals , Body Weight , Diet, High-Fat , Disease Models, Animal , Disease Susceptibility , Gene Expression , Hypoxia/blood , Hypoxia/physiopathology , Inflammation/blood , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/blood , Obesity/etiology , Obesity/physiopathology
11.
Int J Obes (Lond) ; 37(2): 288-95, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22334194

ABSTRACT

OBJECTIVE: Diets high in fat are implicated in the development and maintenance of obesity, and obese individuals display greater preferences for high-fat foods than do their lean counterparts. Weight-reduction bariatric surgery is associated with changes in food choice. In particular, after Roux-en-Y gastric bypass (RYGB), humans and rodents select or prefer foods that are lower in fat content. We asked whether a bariatric surgical procedure limited to the stomach, vertical sleeve gastrectomy (VSG), causes a similar reduction of fat intake/preference. RESEARCH DESIGN AND METHODS: Rats received VSG or Sham surgery or remained surgically naïve, and were assessed for food preference using three diet-choice paradigms. Using progressive-ratio (PR) and conditioned taste aversion paradigms, we further asked whether surgically induced changes in food choice are secondary to changes in the reward value of food and/or to the formation of a food aversion. Finally, food choice was compared between VSG- and RYGB-operated rats. RESULTS: VSG rats decreased their intake of dietary fat, and shifted their preference toward lower caloric-density foods. This change in food choice was not associated with changes in motivated responding on a PR schedule for either a fat or a carbohydrate food reinforcer. When VSG and RYGB were compared directly, both procedures caused comparable changes in food choice. The conditioned taste aversion paradigm revealed that VSG rats form an aversion to an intra-gastric oil administration whereas RYGB rats do not. CONCLUSIONS: VSG and RYGB, two anatomically distinct bariatric procedures, produce similar changes in food choice.


Subject(s)
Dietary Fats/metabolism , Food Preferences , Gastric Bypass , Gastroplasty , Obesity/surgery , Animals , Body Weight , Choice Behavior , Energy Metabolism , Male , Physical Conditioning, Animal , Rats , Rats, Long-Evans , Reward , Taste
12.
Nutr Diabetes ; 2: e27, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-23169552

ABSTRACT

OBJECTIVES: Because females have blunted counterregulatory responses to hypoglycemia relative to males, we hypothesized that females would have greater sensitivity to changes in lipid availability. DESIGN AND SUBJECTS: To assess this, we examined the feeding response to glucoprivation (2-deoxyglucose; 2DG) and lipoprivation (mercaptoacetate; MA) in age-matched male and female Long-Evans rats. RESULTS: Males versus females had significantly greater food intake after 250 mg kg(-1) of 2DG, but there were no sex differences with the 750 mg kg(-1) dose of 2DG. Glucose responses to 250 mg kg(-1) of 2DG were also significantly greater in males versus females. In contrast, females had a significant increase in food intake with all doses of MA versus saline, and had significantly greater food intake compared with males at the lowest and highest doses of MA with a trend towards significance with the intermediate dose. To determine whether estradiol (E2) is the mechanism underlying this sexual dimorphism, ovariectomized females were injected with vehicle or 2 µg of E2 every fourth day to mimic the variations in across the estrous cycle. Ovariectomized females significantly increased feeding and glucose after 250 mg kg(-1) of 2DG over intact females and E2 had no effect on these responses. Although the feeding response to 2DG was not different, the glucose response to 2DG was still significantly greater in males versus ovariectomies females. However, ovariectomized females also did not increase food intake after MA, regardless of E2 treatment. CONCLUSIONS: These data collectively suggest that males are relatively more sensitive to glucose deprivation and females are relatively more sensitive to lipid deprivation. Further, these data rule out a role for cyclic changes in E2 in these sex differences.

13.
Endocrinology ; 153(6): 2647-54, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22518062

ABSTRACT

Leptin resistance is a feature of obesity that poses a significant therapeutic challenge. Any treatment that is effective to reduce body weight in obese patients must overcome or circumvent leptin resistance, which promotes the maintenance of excess body fat in obese individuals. Ciliary neurotrophic factor (CNTF) is unique in its ability to reduce food intake and body weight in obese, leptin-resistant humans and rodents. Although attempts to use CNTF as an obesity therapy failed due to the development of neutralizing antibodies to the drug, efforts to understand mechanisms for CNTF's anorectic effects provide an opportunity to develop new drugs for leptin-resistant individuals. CNTF and leptin share several structural, anatomic, and signaling properties, but it is not understood whether or how the two cytokines might interact to affect energy balance. Here, we conditionally deleted the CNTF receptor (CNTFR) subunit, CNTFRα, in cells expressing leptin receptors. We found that CNTFR signaling in leptin-responsive neurons is not required for endogenous maintenance of energy balance and is not required for the anorectic response to exogenous administration of a CNTF agonist. These results indicate that despite anatomical overlap for CNTF and leptin action, CNTF appears to act within a distinct neuronal population to elicit its potent anorectic effect.


Subject(s)
Appetite Depressants/pharmacology , Ciliary Neurotrophic Factor/pharmacology , Leptin/pharmacology , Neurons/drug effects , Animals , Body Weight/drug effects , Ciliary Neurotrophic Factor Receptor alpha Subunit/genetics , Ciliary Neurotrophic Factor Receptor alpha Subunit/metabolism , Diet, High-Fat , Eating/drug effects , Energy Metabolism/drug effects , Female , Immunohistochemistry , Male , Mice , Mice, Knockout , Mice, Transgenic , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Phosphorylation/drug effects , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
14.
Diabetologia ; 55(1): 3-6, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22002009

ABSTRACT

The prevalence and severity of obesity have increased to epidemic proportions around the globe, and over two-thirds of the US population grapples with either being overweight or obese. Obesity and its comorbidities not only subtract from quality of overall life, but also claim a substantial cost to life. In this edition of 'Then and now', two seminal papers by D.L. Coleman, 'The influence of genetic background on the expression of the obese (ob) gene in the mouse' and 'Effects of parabiosis of obese with diabetes and normal mice', which featured in Diabetologia in 1973, are appraised for their merit and foresight regarding the present eruption of research into what has consequently been labelled 'the metabolic syndrome'. These two studies determined that a then-unknown circulating factor was responsible for the obese/diabetic state of the ob/ob mouse by using a parabiosis model. This circulating factor was later dubbed 'leptin'. The present commentary juxtaposes the astute deduction and simple methods used over 35 years ago and modern research methods as we go forth in our effort to successfully treat and prevent obesity, diabetes and their co-morbidities.


Subject(s)
Diabetes Mellitus , Obesity/genetics , Parabiosis , Animals , Female , Male
15.
Diabetologia ; 54(11): 2890-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21805228

ABSTRACT

AIMS/HYPOTHESIS: Intra-abdominal transplantation of non-visceral adipose tissue in rodents, simulating increased abdominal fat in obesity, paradoxically improves glucose tolerance and insulin sensitivity. We hypothesised that this improvement is due to transplant-induced enhanced uptake of fatty acids by adipose tissue, thus reducing fatty acid flux into, and triacylglycerol storage in, the liver. METHODS: In Experiment 1, mice were sham-operated or received heterologous epididymal white adipose tissue (WAT; EWAT) or visceral WAT (VWAT) transplantation to the portal and splanchnic circulation regions in the visceral cavity. In Experiment 2, inguinal WAT (IWAT) or EWAT was removed and subsequently transplanted to the visceral cavity of the same mouse (autotransplant). IWAT and EWAT autotransplants were repeated in Experiment 3 and compared with heterotransplants. RESULTS: Heterotransplantation of VWAT did not alter glucose tolerance, whereas auto- or hetero-transplantation of EWAT or IWAT significantly improved glucose tolerance. Transplantation-induced improvements in glucose tolerance 4 weeks after surgery coincided with decreased liver triacylglycerol, decreased portal plasma lipids and increased hepatic insulin sensitivity. By 8 weeks, these changes were apparent only in mice with autotransplantation. Heterologous EWAT transplantation-induced glucose improvement persisted without altered liver metabolism. CONCLUSIONS/INTERPRETATION: Increases in visceral fat, via transplantation of visceral or non-visceral adipose tissue, is not a major risk factor for glucose intolerance. In fact, there are dynamic metabolic improvements following transplantation that include decreased portal lipids and improved liver metabolism, but these improvements are transient under certain circumstances.


Subject(s)
Glucose Intolerance/etiology , Insulin Resistance , Lipid Metabolism , Liver/metabolism , Obesity, Abdominal/physiopathology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Adipose Tissue, White/transplantation , Animals , Disease Models, Animal , Epididymis , Glucose Intolerance/prevention & control , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Intra-Abdominal Fat/transplantation , Lipids/blood , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity, Abdominal/blood , Obesity, Abdominal/metabolism , Obesity, Abdominal/pathology , Peritoneum/surgery , Recombinant Proteins/metabolism , Transplantation, Autologous , Transplantation, Homologous
16.
Annu Rev Nutr ; 30: 219-35, 2010 Aug 21.
Article in English | MEDLINE | ID: mdl-20225935

ABSTRACT

The mammalian target of rapamycin (mTOR) pathway coordinates cell growth in response to nutrient availability. Increasing evidence points to a role for mTOR to also direct whole-body energy balance in response to micronutrient as well as hormonal cues. This positions mTOR as a key central integrator of acute and chronic changes in fuel status. Energy balance is affected by mTOR in several organ systems, including the hypothalamus, where the pathway can modulate feeding. We propose that a greater understanding of this nutrient-sensitive pathway may open the door to more intelligent, effective diet design based on the effects of micronutrients on specific signaling pathways.


Subject(s)
Central Nervous System/physiology , Diet Therapy/trends , Energy Metabolism/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Obesity/diet therapy , Protein Serine-Threonine Kinases/metabolism , Animals , Humans , Hypothalamus/metabolism , Obesity/metabolism , Obesity/physiopathology , Signal Transduction/physiology , TOR Serine-Threonine Kinases
17.
J Psychiatr Res ; 42(9): 787-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-17888452

ABSTRACT

The insulin secretogogue glucagon like peptide-1 (GLP-1), as well as agents which enhance GLP-1 signaling, are being studied as potential treatments for diabetes. Pre-clinical evidence suggests that these agents may have neuropsychiatric side effects; however, there have been no investigations or reports of these effects in humans. We evaluated possible anxiogenic and panicogenic properties of GLP-1 in 9 healthy subjects (age 47+/-8 years) and 7 patients with panic disorder (age 38+/-17 years) using a single-blinded intravenous GLP-1 challenge (2pmol/kg/min over 60min). We assessed the occurrence of panic attacks during and after GLP-1 infusion and the emergence of anxiety or panic symptoms using the Acute Panic Inventory (API). No patient or healthy subject experienced any panic attacks at any point during this study. Moreover, there were no significant changes in API scores following the infusion in either group. These data suggest that in humans, intraveneously administered GLP-1 does not appear to have anxiogenic or panicogenic properties, even in patients at highest risk for such reactions.


Subject(s)
Affect/drug effects , Anxiety Disorders/diagnosis , Anxiety Disorders/epidemiology , Glucagon-Like Peptide 1/pharmacology , Panic Disorder/diagnosis , Panic Disorder/epidemiology , Blood Glucose/analysis , Diagnostic and Statistical Manual of Mental Disorders , Female , Glucagon-Like Peptide 1/administration & dosage , Humans , Infusions, Intravenous , Male , Middle Aged , Severity of Illness Index , Signal Transduction/drug effects , Single-Blind Method
18.
Obes Rev ; 6(4): 307-22, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16246216

ABSTRACT

The neuropeptide Y (NPY)/peptide YY (PYY) system has been implicated in the physiology of obesity for several decades. More recently ignited enormous interest in PYY3-36, an endogenous Y2-receptor agonist, as a promising anti-obesity compound. Despite this interest, there have been remarkably few subsequent reports reproducing or extending the initial findings, while at the same time studies finding no anti-obesity effects have surfaced. Out of 41 different rodent studies conducted (in 16 independent labs worldwide), 33 (83%) were unable to reproduce the reported effects and obtained no change or sometimes increased food intake, despite use of the same experimental conditions (i.e. adaptation protocols, routes of drug administration and doses, rodent strains, diets, drug vendors, light cycles, room temperatures). Among studies by authors in the original study, procedural caveats are reported under which positive effects may be obtained. Currently, data speak against a sustained decrease in food intake, body fat, or body weight gain following PYY3-36 administration and make the previously suggested role of the hypothalamic melanocortin system unlikely as is the existence of PYY deficiency in human obesity. We review the studies that are in the public domain which support or challenge PYY3-36 as a potential anti-obesity target.


Subject(s)
Anti-Obesity Agents/pharmacology , Body Weight/drug effects , Eating/drug effects , Peptide YY/pharmacology , Animals , Behavior, Animal , Data Interpretation, Statistical , Dipeptidyl Peptidase 4/metabolism , Humans , Peptide Fragments , Peptide YY/administration & dosage , Receptors, Neuropeptide Y/agonists , Satiety Response/drug effects , Species Specificity , Stress, Physiological/physiopathology
19.
Obes Rev ; 6(3): 259-65, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16045641

ABSTRACT

This review describes the product of the 3-day International Association for the Study of Obesity (IASO) Stock Conference held in March 2004 and sponsored by Abbott Laboratories. The conference was focused on how the mechanisms by which individual cells sense their own fuel status might influence the energy balance of the entire organism. Whether you are a single-celled organism or a sophisticated mammal with a large cerebral cortex, it is critical that cellular activity be matched to the available fuel necessary for that activity. Rapid progress has been made in the last decade in our understanding of the critical metabolic events that cells monitor to accomplish this critical task. More recent developments have begun to apply this understanding to how critical populations of neurones may monitor similar events to control both food intake and energy expenditure. The picture that emerges is that numerous peripheral fuel sensors communicate to the central nervous system (CNS) via neural and humoral routes. Moreover, it has been known for decades that specific populations of neurones sense changes in ambient glucose levels and adjust their firing rate in response and changes in neuronal glucose metabolism can influence energy balance. The CNS, however, does not just sense glucose but rather appears to be sensitive to a wide range of metabolic perturbations associated with fuel availability. This information is used to adjust both caloric intake and the disposition of fuels in the periphery. Increased understanding of these CNS fuel-sensing mechanisms may lead to novel therapeutic targets for obesity.


Subject(s)
Central Nervous System/physiology , Energy Metabolism/physiology , Obesity/physiopathology , Obesity/therapy , Glucose/metabolism , Humans , Lipid Metabolism , Models, Biological , Ribosomal Proteins/biosynthesis , Signal Transduction/physiology
20.
J Neuroendocrinol ; 17(7): 445-51, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15946162

ABSTRACT

Ghrelin is an orexigenic peptide made both in the periphery and in the central nervous system. Relatively little is known about the factors that regulate ghrelin secretion. Because both ghrelin and glucocorticoids are increased during fasting, we hypothesised that ghrelin secretion from the stomach is stimulated by glucocorticoids. Plasma ghrelin concentrations were determined by radioimmunoassay in fed and fasted adrenalectomised (ADX) and sham-operated rats. Fasting plasma ghrelin concentrations were significantly increased in ADX relative to sham rats and were normalised by glucocorticoid replacement. Several lines of evidence suggest that the orexigenic action of ghrelin is mediated through neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones. Because ADX reduces the orexigenic actions of NPY and AgRP, we hypothesised that ADX would also reduce the orexigenic action of ghrelin. Food intake was assessed in ADX and sham rats following an intra-third-ventricular injection of either saline or ghrelin (1, 5 or 10 microg in 2 microl). ADX rats were equally sensitive to the orexigenic action of ghrelin compared to sham rats. Given that ghrelin has been shown to stimulate glucocorticoid secretion, the current data imply the existence of a regulatory feedback loop whereby glucocorticoids inhibit further ghrelin secretion. The results also suggest that, unlike the orexigenic effects of NPY and AgRP, the ability of ghrelin to stimulate food intake is maintained in ADX rats.


Subject(s)
Adrenalectomy , Corticosterone/blood , Peptide Hormones/metabolism , Agouti-Related Protein , Animals , Eating/drug effects , Eating/physiology , Fasting/physiology , Ghrelin , Injections, Intraventricular , Intercellular Signaling Peptides and Proteins , Male , Neurons/metabolism , Neuropeptide Y/metabolism , Peptide Hormones/blood , Peptide Hormones/pharmacology , Proteins/metabolism , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...